
High Performance Computing
using Portals over TNet

Diploma Thesis

Adrian Riedo
Summer 2000

Swiss Federal Institute of Technology Zurich, Switzerland
The University of New Mexico, Albuquerque USA

To my parents: with gratitude for your love and support.

The Portals over TNet Project i

Foreword

This report is the result of the diploma thesis on High Performance Computing at the Scal-
able Systems Lab at the University of New Mexico in summer 2000.

The design and implementation of a network protocol represents a challenging task.
Knowledge on the hardware, the operating system, kernel programming and protocol
design are required to achieve the goals.

With this work, the basic for further research is given. The preliminary implementation on
the development system will serve for future experimentation and programming.

At this point I would like to thank Prof. Anton Gunzinger and Prof. Gerhard Troester of
the Swiss Federal Institute of Technology Zurich and Prof. Arthur B. Maccabe of the Uni-
versity of New Mexico for their support. Many thanks also go to my technical advisors
and helpers, namely Martin Heimlicher and Martin Frey of Supercomputing Systems Zur-
ich, Rolf Riesen and Jim Otto of Sandia National Laboratories Albuquerque and Riley
Wilson of the University of New Mexico.

Albuquerque, September 2000

Adrian Riedo

Foreword

ii The Portals over TNet Project

The Portals over TNet Project iii

Statement of work

Statement of Work for Adrian Riedo

The goal of this project is to evaluate the possibility of developing a high-performance
implementation of the Portals 3.0 API on TNet.

Background

The Portals 3.0 API was developed as a joint project between Sandia National Laborato-
ries and the Scalable Systems Lab at the University of New Mexico. Like many other
high-performance message passing APIs (e.g. Scheduled Transfer and Virtual Interface
Architecture), the Portals API supports OS-Bypass. OS-Bypass is motivated by the high
cost, in terms of time, associated with servicing interrupts during high speed communica-
tion. In OS-bypass, the relevant policies of the OS are implemented in a control program
which is run on the Network Interface Card (NIC), thus eliminating the need to generate
many of the interrupts associated with high speed communication. In addition to OS-
Bypass, the Portals API also supports "application-bypass." Application-bypass is moti-
vated by the need to minimize memory copies during communication. In application-
bypass, the policies of the application regarding message placement are implemented on
the NIC. Because the NIC is able to deliver messages to the correct location based on the
contents of the message, the application is able to avoid a costly memory copy operation.

The company Supercomputing Systems in Zurich designed a custom network called TNet
for the parallel computing project "Swiss-Tx" at the Swiss Federal Institute of Technology
in Lausanne (EPFL). The message passing library MPI is installed and executed through
the hardware interpreted Fast Communication Interface (FCI) that enables a direct store
from one processor into the memory of another processor. Because the network interface
card carries a large FPGA and 16 (or more) MB of memory, a flexible and fast implemen-
tation of any communication protocol can be done. By putting time-critical parts of the
protocol into the hardware it is possible to optimize latency and throughput of high-perfor-
mance networks.

Statement of work

iv The Portals over TNet Project

Project Scope

The goal of this project is to design and develop an initial implementation of the Portals
3.0 API for TNet. We will start from the reference implementation of the Portals 3.0 API.
The Portals 3.0 reference implementation uses a Network Abstraction Layer (NAL) to
achieve independence of protection domains. That is, all of the calls to functions in the
NAL are implemented as call-backs which may or may not cross protection domain
boundaries. The three protection domains of interest are the application, the OS (kernel),
and the domain defined by the control program on the NIC.

The primary goal of this project is to design an implementation of the Portals API that
places as much of the functionality on the NIC as is feasible. This design would define the
goal of a full implementation. A secondary goal is to develop a preliminary implementa-
tion of this design. In the preliminary implementation, much of the Portals functionality
will remain in the application and OS domains and the NIC will have minimal functional-
ity.

Prof. Barney Maccabe Prof. Gerhard Troester

The University of New Mexico Swiss Federal Institute of Technology
Albuquerque, USA Zurich, Switzerland

Table of contents

The Portals over TNet Project v

Foreword i

Statement of work iii

CHAPTER 1 Introduction 1

CHAPTER 2 Analysis 3
Basics. 3

Message Passing. 3
Data movement layer . 4
Network . 4

Portals . 4
CPlant environment . 5
Portal Addressing . 6
Architecture . 7
Myrinet . 8

TNet . 9
Background. 9
Network Characteristics . 9

Fundamentals . 9
OSI layers . 10
Address Translation. 11
Network Packet . 11

PCI Network Interface Card. 12
TNet Driver & FCI . 14

Summary . 15

vi The Portals over TNet Project

CHAPTER 3 Design 17
Case study . 17

Hardware solution . 18
Application . 18
Driver . 18
Firmware. 18

Software solution . 19
Application . 19
Driver . 19

Conclusion . 19
Design Concepts . 20

Portals & TNet modules . 20
Hybrid module . 21
Communication . 22

CHAPTER 4 Implementation 23
Development System . 23
Setup . 25
TNAL . 25

API-side NAL . 25
Architecture . 25
Code extracts . 26

LIB-side NAL . 27
Architecture . 27
Dataflow . 27
Code extracts . 28

Testing . 32

CHAPTER 5 Conclusion 33
Results. 33
Prospects . 34
Commentary . 34

CHAPTER 6 References 35

APPENDIX A Technical Abbreviations 37

The Portals over TNet Project 1

CHAPTER 1 Introduction

Time is money! Even though we usually associate these words to business, it is also an
important concept in computer science. Computers were built to solve problems faster
than man could. During the evolution of the Computer, a main goal was (and will always
be) to make computation faster and cheaper. The time factor becomes more and more
important, when it comes to long calculations (e.g. scientific problems).

A couple years ago supercomputers were usually built from the bottom up in terms of
hardware and software to achieve the lofty goals of High Performance Computing. With
the fast growing technology of personal computers and the fact that those systems have
become bulk ware, the idea to build supercomputers out of standard components is
becoming common.

A major part of commodity based systems is the network and communications in general.
In contrast to “one-box-supercomputers”, the liberty to interconnect the computational
nodes (processors, memory) is restricted. The only feasible way to communicate is
through the interfaces provided by the off-the-shelf computer (system bus). Depending on
the final field of applications the network has to be chosen or designed wisely (NIC,
switches, topology and of course the protocol).

Another very important factor is the portability of the applications among other
(super)computers. It would be a waste of time if applications would have to be rewritten
every time the system changes. The most common used standard that supports parallel
applications and libraries nowadays is MPI (the Message Passing Interface) which defines
the syntax and semantics of a core of library routines for programs in Fortran or C.

With a large number of computational nodes connected by a fast network on one side and
a portable library for applications on the other, it is important that the protocol between
these two worlds has to be designed the way to provide the maximum of the hardware
resources to the applications.

Introduction

2 The Portals over TNet Project

It is exactly this part what the current report is all about. The related project is the evalua-
tion and first implementation of the Portals API on TNet. Portals is the data movement
layer that is used on one of world’s fastest supercomputers at Sandia National Laborato-
ries while TNet is a complete network developed by Supercomputing Systems Zurich,
Switzerland.

After an analysis on both environments, different designs and its complexities are dis-
cussed. One concept is implemented finally on a development system.

The Portals over TNet Project 3

CHAPTER 2 Analysis

This chapter will give a short overview of the Portals 3 application programming interface
(API) and the TNet adapter specifications (with some background on the related soft-
ware). A precise analysis provides the knowledge necessary to design a proper implemen-
tation.

Because the purpose of this project is to evaluate and implement a previously designed
API on a different set of hardware, one could think that only Portals must be studied in
depth. However, because of the different features of the hardware, it is also important to
analyze the reference implementation of TNet.

After some basics on HPC an overview of both systems will be given that will help to
design Portals over TNet.

2.1 Basics

The idea is simple: In a cluster-based supercomputer (supercluster), data should be trans-
mitted from one computational node to another as fast as possible and still maintain scal-
ability and portability. Fast means with the shortest latency and highest bandwidth
possible. Adding more nodes to a cluster should increase the total computational power
linearly - such a system is called scalable. To achieve these goals, several techniques are
used.

2.1.1 Message Passing

In a parallel machine, data could be transferred in many different ways from one process
to another, but not every solution is portable and, consequently, only useful for a specific
hardware. A widely used paradigm for process intercommunication is message passing,
which, as several systems around the world have shown, can be implemented efficiently.
The Message Passing Interface MPI [2] is one of the most popular standards for distrib-

Analysis

4 The Portals over TNet Project

uted memory systems. This application programming interface lies just below the applica-
tion and defines how data is communicated among processes in an application. Every
underlying protocol (e.g. between MPI and hardware) should transfer messages effi-
ciently.

A good way to learn the principles of MPI is to write some programs on mpich [3], which
can be downloaded for free and runs on TCP/IP.

2.1.2 Data movement layer

The data movement layer is the protocol that provides the functionalities to MPI and the
application to send and receive data over a specific type of network. This layer has to be
designed to support the scalable properties of MPI while maintaining network indepen-
dence. Furthermore, a good implementation will avoid memory copies because network
bandwidth approaches memory bandwidth more and more on today’s fast systems. Mod-
ern NICs even allow bypass of the OS and put arriving messages directly into the memory
space of the application. OS-Bypass and zero-copy has become a state of the art require-
ment for modern message passing layers. Techniques that allow large message transfers,
using remote puts and gets, without the need for any intervention on the part of the appli-
cation or an application level thread are called Application Bypass. All these design rules
are usually based on a connectionless communication model, meaning that no explicit
connection is established before any transaction of data.

2.1.3 Network

To fulfill the requirements imposed by the data movement layer, configurable network
hardware is needed. As a part of the protocol has to be done on the NIC, they have to be
programmable. Network interface cards, such as Myricom’s Myrinet use microprocessors
while the TNet NICs of Supercomputing Systems are armed with large FPGAs, a reconfig-
urable hardware device. Both solutions can provide flow control on the card as well as
implementation of pagetables and retransmission protocols. Of course, the rest of the net-
work (e.g. switches) should not impose any scalability limitations.

2.2 Portals

Portals 3 is the data movement layer actually used by the CPlant cluster at Sandia National
Labs. Its roots go back to the SUNMOS [12] and TeraFLOPS [12] projects and is
designed to support commodity based clusters up to the order of ten thousand nodes. The
Portals 3.0 API is well documented in [1]. This chapter will concentrate on the actual
implementation on Myrinet and discuss the software architecture. Although Portals is well
designed, it can be confusing to read the source code for newcomers as it is divided in
many pieces. To understand the dataflow through the code, a step by step example will be
given which will also help to design the network abstraction layer (NAL) for TNet.

The Portals over TNet Project 5

Portals

2.2.1 CPlant environment

On the CPlant cluster, Portals 3 is one important component among others and is still
under development. A closer look on the actual implementation (figure 2.1) shows the
kernel modules (drivers) acting as mediators between application and network.

FIGURE 2.1. CPlant environment

The application builds the top level and includes the MPI library as well as the API side
of Portals. A process can use the older Portals 2 or Portals 3 for communication. There are
two reasons why Portals 2 is still included: compatibility to older applications and because
some functions are not yet implemented in Portals 3.

An IP module is used as a temporary solution for IO (i.e. filesystem) over the high perfor-
mance network as long as there is no version running on Portals. This is just an intermedi-
ate solution that does not scale.

The RTS/CTS kernel module and the corresponding firmware on the Myrinet NIC
together form the low level send and receive functionalities. Every packet passes through
the ready to send, clear to send unit and thus the kernel mode. The next chapter will show
that Portals 3 is designed so that parts of it can be put into the NIC in the future and omit
costly kernel calls.

Remark: The Computational Cluster contains more than 1000 nodes and is still growing.
Each host (Alpha workstation) runs at 500MHz and contains 256 MB of main memory.
Figure 2.2 shows the second phase of the CPlant evolution called “Siberia”.

RTS / CTS
rtscts.mod

Firmware (Myrinet)
rtsmcp

IP
myrip.mod

Portals 2
portals.mod

Portals 3
p3.mod

IO
(temp)

Application
(MPI) on Portals

Analysis

6 The Portals over TNet Project

FIGURE 2.2. CPlant “Siberia” at Sandia National Laboratories

2.2.2 Portal Addressing

This section will give a short introduction to the Portals 3 addressing mechanism. A Portal
represents an opening in the address space of a process. A Portal get operation reads data
from another process while a put performs a write operation.

The Portals addressing scheme for incoming data is an intricate hierarchy. The first iden-
tifier is a match list, a list of match entries each of which contains a set of match bits.
These bits describe a specific pattern that the incoming data must match to use that match
entry. Within each match entry is a list of memory descriptors that define a region in
memory as well as the behavior associated with that region, like how many and what kind
of operations can be done using it. Although the match entry contains a list of memory
descriptors, only the first one is considered when matching incoming data. Each memory
descriptor can contain an event queue that is updated when an operation is performed on
the region to let the application know what has happened. The final piece of addressing
information is an offset within the memory descriptor. Therefore, a remote memory
address can be accessed through a match entry, a memory descriptor, and an offest in the
region defined by the memory descriptor.

A more detailed explenation can be found in the Portals 3 API documentation [1].

The Portals over TNet Project 7

Portals

2.2.3 Architecture

The implementation strategy of Portals 3 is to provide a highly platform and network
independent API for message passing applications. The concept of a network abstraction
layer (NAL) is used to make migration from one network environment to another easy.
Portals 3 is divided into two parts: an application programming interface (API) and a
library (LIB). Basically, the following graphic shows the software hierarchy, highlighting
the relevant sourcefiles for the NAL.

FIGURE 2.3. Portals 3 architecture

The current CPlant network is Myrinet and therefore the network abstraction layer is
called MyrNAL. On the API-side the NAL is defined by myrnal.c and controls the com-
munication out of the application. The main LIB-side NAL sourcefile is called
lib_myrnal.c and accesses the library which is actually located in the kernel as a driver.
These files separate hardware dependent calls from logical routines.

The function forward on the API-side is used to communicate to the library. For a library
in form of a kernel module, ioctl, a widely used Unix programming function, is used to
perform this operation. For the NAL on the library side, more functions are required as
most of the Portals work is done here. Its main functionalities include open, dispatch and
close of the library and communication to the next layer (send, receive).

The network abstraction layer makes migration to another network environment much
easier as the programmer does not have to deal with the Portals internals in depth. This is
especially true when the library still remains in kernel space in form of a driver.

api-p30/*

nal.c

lib-p30/*

lib_nal.c

Application
(USER)

Driver (or Hardware)
(KERNEL, resp. Firmware)

A
PI

 L
ib

ra
ry

Analysis

8 The Portals over TNet Project

A Portal put will serve as an example to have a closer look at the network abstraction layer
and the dataflow in Portals 3. The following graphic shows the simplified situation of a
point-to-point put from the initiator to the target.

FIGURE 2.4. Simplified example of a Portal put

Figure 2.3 describes the simplified communication scheme that occurs during a call to
PtlPut. After some initial processing by the API, control is passed down to the NAL. The
NAL function forward calls ioctl, a Linux system call for communicating with a module.
The library side of the NAL receives this call and immediately dispatches it to the Portals
library, where all of the data necessary for communication with another node is assembled
and handed back to the NAL again. The NAL then calls the routines that actually transmit
the data over the NIC.

When the data arrives on the remote side, the incoming data handler passes the appropriate
information to the Portals lib_parse routine and, consequently, to parse_put. This func-
tion finds the appropriate memory descriptor, if one has been setup, and calls the library
side NAL to actually receive the data. The transaction concludes when nal_recv calls
lib_finalize and the appropriate event queue is updated in user space with a put event.

2.2.4 Myrinet

Myrinet is a network product for High Performance Computing by Myricom Inc, Arcadia
USA. The core of every 32 or 64 bit PCI Myrinet interface card is the so called LANai
chip, a RISC based VLSI ASIC which controls host and packet interface as well as the
onboard fast local memory. Currently, the NICs are shipped with LANai version 9 and can
hold up to 8 MB of memory. The microprocessor in the LANai can be programmed for
custom protocols to support OS Bypass for example. This program, that has to be down-

 U
SE

R
K

ER
N

EL
N

IC
Application

api-p30/*

nal

function called / file

main application / ~.c

PtlPut / ~ in api-p30

forward / myrnal.c

lib_nal

lib-p30/*

lib_nal

ioctl, lib_dispatch / fileio.c

do_PtlPut / ~ in lib-p30

send / lib_myrnal.c

rts/cts

Application

function called / file

lib_nal

lib-p30/*

lib-p30/*

recv / lib_myrnal.c

parse_put / ~ in lib-p30

lib_parse / ~ in lib-p30

rts/cts

The Portals over TNet Project 9

TNet

loaded to the NIC, is called Myrinet Control Program or simply MCP. The full-duplex
links that are interconnecting the network devices can be electrical or optical. The network
routing is source oriented, which is reflected in the low-priced “dumb” switches.

2.3 TNet

TNet is a complete network including hardware and software for High Performance Com-
puting that has been developed by Supercomputing Systems (SCS) Zurich, Switzerland.
The primary application of this product was the Swiss-Tx cluster located at the Swiss Fed-
eral Institute of Technology in Lausanne (EPFL) where its expected high bandwidth and
low latency was proved in practice.

2.3.1 Background

The TNet hardware consists of 32bit as well as 64bit PCI network interface cards and
intelligent, destination routed switches interconnected by Fiber channel technology. A
NIC firmware, a TNet driver and the Fast Communication Interface (FCI) [8] together
form the basic software to run message passing oriented applications. On the Swiss-Tx
cluster, job management is done by Gridware’s Codine that is interacting with Cosmos, a
process control service for TNet by SCS.

The concepts of TNet go back to SCS’s Remote Store Architecture technology, a tech-
nique that enables a direct store from one processor into the memory of another processor.
It is the long research and experience of SCS on parallel computing that characterizes the
high quality of this product.

2.3.2 Network Characteristics

This is a short overview of the TNet specification that will help the reader to understand
the design and implementation later in this report. More specific information can be found
in [4] and [5] while the focus in the following sections will be on the hardware.

2.3.2.1 Fundamentals

“It’s all about address mapping” could be a technical saying to describe the fundamentals
of TNet. As the idea is to transfer (store) data from one node to another, the most direct
way is to let the running process send the data down to the NIC (bypassing the OS) and
out on to the network. The arriving packet on the remote NIC will then be copied into the
appropriate memory area of the destination process.

Analysis

10 The Portals over TNet Project

FIGURE 2.5. Remote Store Strategy

Address translation is done on multiple levels (PCI-Bus, Network, etc.) for a remote store.
The important part is, that the network card can map the host memory to the network in
form of Virtual Communication Addresses. The example above describes the situation
after the target has sent a request to get a message to the initiator. This mechanism allows
the target’s NIC to handle the incoming data and place it at the right memory spot in the
host.

TNet has been designed for large-scale clusters. Each NIC is addressed by a 16bit destina-
tion ID which gives a total of 65536 nodes possible. The actual network bandwidth is
1Gbit/s and will be multiplied on future TNet releases. Switches are remotely configurable
and allow any network topology by preventing deadlocks. The 12 port full crossbar
switches, which in contrast to Myrinet use destination routing, also include monitoring of
the network performance. Variable size micropackets of maximal 128 bytes permit a fair
access even on a highly loaded network. Reliability is improved by a hardware imple-
mented retransmission protocol.

2.3.2.2 OSI layers

Comparing to the OSI reference model, TNet supports unicast and multicast on the net-
work layer (broadcast is just a special case of multicast). Now imagine a huge cluster of
computing nodes running multiple MPI applications and that one of the processes uses the
MPI command to send a broadcast out to its “friends”. On a unicast-only network this
message would have to be sent n times while on a system with broadcast option, all of the
nodes would receive the message, even those that are running different applications. So on
TNet, a MPI broadcast will turn into a network multicast and reduce network traffic.

On the transport layer, TNet offers two communication types: direct mapped and table
mapped. Direct mapped is a simple 2 point communication from one PCI adapter board to
another in a direct addressing mode. Table mapped communication has been introduced
for SMP boxes so that a message has only to be transmitted once over the network when it
is addressed in an indirect mode to multiple processes on the destination node. In this case,
the receiving NIC will locally copy the data to the corresponding processes.

Application

OS

NIC

Initiator Target

Application

OS

NIC

Virtual Communication Address (VCA)

host memory address

address translation

The Portals over TNet Project 11

TNet

2.3.2.3 Address Translation

The remote store strategy requires a network interface which can be programmed and
updated during execution time. On TNet, two different OS bypass capable techniques
were designed to translate addresses and store incoming packets into the host memory.

• A contiguous memory block (CMB) is preallocated at boot time and acts as a “trans-
fer buffer” for sends and receives. This memory area is simply translated by an offset
on the NIC to a virtual communication address on the network.

• A dynamic pagetable in the memory on the NIC allows mappings of memory regions
of the host to the network.

FIGURE 2.6. Address Translation on TNet

The CMB model will make programming easier as there is no modification of the NIC
state to be done during execution. The drawback is obvious: incoming and outgoing data
has to be copied at least once from or to the memory block.

2.3.2.4 Network Packet

A TNet network packet contains a small header with the Destination ID, remote interrupt
ID, some identification flags and the Virtual Communication Address (resp. table index
and offset for table mapped mode) followed by the payload (up to 56 words) and the net-
work tail (CRC). The Virtual Communication Address and the Destination Address
together identify a memory area of one specific node in the cluster. For the moment being,
32 out of the 64 bit wide VCA are used which leads to a total addressable memory of 4 GB
Virtual Address Space (VAS) per network interface card and process. A pagetable with a
pagesize of 4 kB would require 4 MB memory on the TNet Adapter to address 4 GB of
hostmemory.

CMB

host memory address space

network virtual communication address space

VCA

offset

pg pgpg

VCA

pagetable

Analysis

12 The Portals over TNet Project

2.3.3 PCI Network Interface Card

At the time this project started, the 64bit TNet card was in production, so the available
NIC was the 32bit version which will be described shortly. Again, more information is
available in [4].

FIGURE 2.7. 32bit TNet PCI Adapter

In contrast to Myrinet, this adapter doesn’t have a processor but instead two big Field Pro-
grammable Gate Arrays (FPGA) sharing the work. Even these devices are configurable
there is not a program executed on the NIC. Once the FPGA’s are configured they
“behave” like hardware. Operations that have to be done on the network card are therefore
designed as hard-wired parts. The advantage is obvious: time critical functions can be
implemented very fast thanks to the high parallelism on the chip which runs approxi-
mately at the clockrate of the PCI bus.

FIGURE 2.8. TNet PCI Adapter Block Diagram

CCLC
TX-FIFO

GBE PLX

SRam

SDRAM

RX-FIFO

PCI

The Portals over TNet Project 13

TNet

The 32bit NIC consists of the following main parts:

• CC: The Communication Controller is a Lucent Orca 3T80-5 FPGA running at a
clockrate of 31.25 Mhz (half the frequency of the LC).
Its main functions are the Send (Tx) and Receive (Rx) units as well as checksum
(CRC) generation and all the memory controllers (SRam, SDRam, FIFOs).

• LC: A Lucent Orca 3T30-6 FPGA is used as Link Controller and runs at 62.5 MHz.
The handshaking and retransmission protocol are implemented here. Buffers for 3
packets OUT and 1 packet IN and the CRC check are also part of the LC.

• PLX: is the manufacturer of the PCI9080 PCI bridge which offers access to the back-
end device, the CC.

• SRAM: The ID Validation Table is stored in the 128 x 18 Bit SRAM.
• SDRAM: TNet is shipped with 16 MB on board RAM as a minimum and could also

be assembled with bigger memory devices. The pagetable can be placed here and
leaves enough space for the index to address translation table which is used for table
mapped mode on SMP machines.

• FIFO: Send and receive Buffers
• GBE: The Gigabit Ethernet (GBE) controller VSC7211 from Vitesse Technologies

finally builds the bridge between the network and the card.

The PCI-Adapter (registers and memory) is accessible from the host software (driver,
application) through the PCI bridge controller (PLX) using a global communication win-
dow (gcw). When an application sets up a new communication it writes the Destination ID
(or Multicast ID) to the Sender Network Destination ID Register (SNDIR) on the TNet
adapter. Because any application can set this register, the Destination ID has to be cross-
checked against the entries of a special table containing all valid destinations in the sys-
tem. This ID validation is done in hardware on the TNet adapter (table in SRAM) as in
software this could only be realized in kernel mode.

If a transmission error (CRC fail) occurs on a link on the network, the Link Controller
(LC) on the TNet adapter automatically requests a retransmit from the sending network
device. The buffers in the Link Controller are set to 3 outgoing packets and 1 incoming
packet.

Besides, the TNet PCI Adapter supports burst assembling, which is especially useful in
case of Programmed I/O (PIO), when data is transferred over the PCI-Bus to the NIC in
small pieces (bursts). Throughput of the network can so be improved by assembling bursts
into network packets. The size of the datablock to be transferred is first written to a regis-
ter on the adapter to enable the assembling.

The TNet 32 bit PCI adapter specification was subject of the first Portals over TNet pre-
sentation on a weekly Scalable Systems Lab meeting at the University of New Mexico.

Analysis

14 The Portals over TNet Project

2.3.4 TNet Driver & FCI

The driver provides access to the TNet device for the operating system and is mainly used
for initialisation (search device, download firmware, etc.), setting up new communication
processes (open, close, ioctl), interrupt service routines (interrupt handler and kernel
thread), monitoring, DMA handling service and memory mapping services. Fast Commu-
nication Interface (FCI) is the name of TNet’s data movement layer and was developed by
Supercomputing Systems and the Swiss Federal Institute of Technology in Zurich
(ETHZ). Relevant parts of FCI, that are compiled into the driver, are used for communica-
tion to the application (e.g. remote interrupt calls).

FIGURE 2.9. TNet environment

Access to the network interface card is managed by a lock on the card. Either the interrupt
handler, the kernel thread or the application can communicate to the NIC after getting the
lock. Write permission to the contiguous memory block is also handled by this lock to
maintain data consitency.

MPI functionality can be implemented on top of FCI. In case of a MPI unicast, the mech-
anism used is similar to a Portal get. The receiver process sets up a transfer by requesting
a message by the sender. While the request is sent, the pagetable on the network adapter is
updated with the corresponding Virtual Communication Address so the expected message
can be placed at arriving time directly at the right memory area of the host. A MPI broad-
cast (multicast on the TNet network) instead would consist of multiple receiver requests
to one sender. Once all requests are transferred to the sender it sends out the broadcast
using the specified Multicast Group ID. The TNet remote interrupt functionality is used to
implement the MPI wakeup function in case of a non-blocking send.

Firmware (TNet)
cc_b35_lc_c35

Application
(MPI) on FCI

TNet Driver
tnet.mod

FCI

tnet

FCI

The Portals over TNet Project 15

Summary

2.4 Summary

The following points summarize the differences of the Portals over Myrinet and Fast
Communication Interface over TNet implementations:

• Network: approx. the same throughput on the wire. NIC hardware concept completely
different - microprocessor (Myrinet) vs. FPGA (TNet)

• Complexity: A Myrinet firmware can be programmed using a high level language as C
- TNet firmware has to be designed in VHDL.

• Performance: The Myrinet LANai processor is actually too slow to operate a fast Por-
tals 3 implementation - FPGA’s on the TNet card can operate multiple requests in par-
allel and thus increase speed.

• Address translation: Portals uses flexible but relatively complex lists (memory
descriptors) while FCI/TNet is based on a pagetable lookup on the NIC (or CMB).

• OS Bypass: Because Portals is in kernel, no OS Bypass is possible - FCI/TNet does
OS Bypass.

• Portability: Portals can be easily implemented on different networks thanks to the net-
work abstraction layer - the current FCI only runs on TNet.

By finishing this analysis, the necessary fundamentals are set to start the design of Portals
over TNet.

Analysis

16 The Portals over TNet Project

The Portals over TNet Project 17

CHAPTER 3 Design

This chapter contains the study on different implementation possibilities and the final
design concept that has been chosen to build a first version of Portals 3 over TNet.

3.1 Case study

From the Portals point of view there are two evident solutions one could think of for an
implementation on TNet:

• Hardware: Put the library side of Portals 3 entirely on the NIC
• Software: library still in kernel, change handling of dataflow in NAL so that TNet is

used instead of Myrinet.

When looking at the problem from the TNet side there are also two major design concepts
to make Portals 3 run on this network:

• FPGA redesign: a full implementation of the Portals library requires a redesign of the
TNet firmware to support Portal Addressing

• CMB and/or Pagetable: make use of the current TNet firmware to communicate over
the network

Both sights fully correspond on their first solution: Putting the library side of Portals 3
completely down to the NIC results in modifications on all levels (firmware to applica-
tion). A software solution instead profits from a prewritten firmware & driver and can be
implemented in different ways (CMB, Pagetable or even on top of FCI).

The impact in terms of complexity, performance and implementation time is discussed in
the following sections.

Design

18 The Portals over TNet Project

3.1.1 Hardware solution

A hardware solution of the Portals 3 library represents one of the final goals of the Portals
implementation strategy. In the case of TNet this would mean that the whole C code
serves as a model to redesign the library in vhdl. While C is a high level programming lan-
guage, vhdl is a description language for hardware and is usually used on a much lower
level for performance reasons. Even vhdl supports some higher abstraction techniques it is
still much different from common programming environments as C.

A “hardware library” has some big impacts on the concepts. First, the application will
send its messages directly to the NIC. Besides the Portals API, functions to talk to the
hardware must be compiled into the application so that forward can “jump” into the net-
work card. Second, and this is the hard part, the matching in the Portals table and the
search for the memory descriptor upon receive of a message is done entirely on the NIC.
Finally there is still a driver (kernel module) needed to initialize the card, download the
firmware and for some calls as remote interrupts.

3.1.1.1 Application

Besides the driver, the application sends and receives data directly to the network card. To
avoid any conflict by simultaneous access from the driver, a control mechanism is needed.
This can be done as actually on TNet where the NIC manages a lock. Either the driver or
the application owns the lock and can send data. Another way is to deceive the driver and
the application and let them think as that there are two independent network devices. The
NIC then handles both requests an “merges” them.

3.1.1.2 Driver

Obviously, a driver is still needed even if the Portals library is implemented in hardware.
Resource management, download of the firmware and initialization of the TNet card is
handled by the driver as well as remote interrupt calls.

3.1.1.3 Firmware

While TNet address matching is based on a simple pagetable lookup, Portals 3 performs a
search in the match entry list and then picks the first matching memory descriptor. The
complexity of the firmware thus increases and requires more space in the FPGA. Search-
ing in these lists result also in multiple memory accesses that can not be done in parallel.

The number of operations for a Portals address translation depends on the number of
entries in the lists. The longer those lists get, the more time and memory accesses it takes
to find a memory descriptor. Compared to the TNet pagetable technique, a faster and
larger FPGA as well as faster memory (i.e. SRAM) would be needed to maintain the same
lookup time as in TNet.

The Portals over TNet Project 19

Case study

3.1.2 Software solution

A pure software solution takes advantage of the presence of the TNet firmware and driver.
The Portals library is still compiled into a kernel module. A network abstraction layer for
TNet (TNAL) replaces the one for Myrinet. One could also think of a Portals over FCI
over TNet design to make programming easy but it is obvious that this “quick and dirty
solution” doesn’t follow the proper implementation strategy of Portals.

3.1.2.1 Application

The API-side NAL function forward has to point to the TNet interface instead of the
Myrinet interface.

3.1.2.2 Driver

As the firmware is kept, two techniques for the communication are possible: the contigu-
ous memory block and the pagetable. For a first version, the CMB solution is a good
choice. Later, an implementation using the TNet pagetable can be realized.

A possible solution would let the LIB-side NAL handle the packets to the contiguous
memory block instead to the RTS/CTS module. Incoming messages carry a remote inter-
rupt flag to wake up the driver and let him pass the information to the library and (upon
match) copy to the application.

3.1.3 Conclusion

A hardware solution is a good project, but would definitely require much more time than
is available for this diploma thesis because:

• Analysis of both environments and setup of the development system already take much
time.

• Software modifications (driver / API-side NAL) alone become more complex than a
pure software solution.

• FPGA is most likely too small to hold the complete library.
• SDRAM on NIC would slow down the benefits from the parallelism on the FPGA.
• VHDL design is time intensive. Usually one test per day can be run because of the sim-

ulation and the place and route steps.
• Debugging is harder.

A successful implementation of Portals over TNet for the time given is only feasible in the
case of a software solution. Once a running Portals over TNet environment exists, it is
then easier to design the hardware solution.

Design

20 The Portals over TNet Project

3.2 Design Concepts

As seen in the case study a full hardware implementation requires high knowledge of
TNet and Portals which results in a long project time. Besides, a development system has
to be set up first in order to start any experimentation. A former software solution would
make a hardware implementation much more feasible as one could start from a working
Portals over TNet environment instead implementing from scratch.

The idea of the whole project is to approach the final goal step by step while learning the
concepts of both systems. For this reason, a software solution in the form of a Portals net-
work abstraction layer for TNet is a good basis for further research. The design concept
for the implementation of a TNAL is discussed in the following sections.

3.2.1 Portals & TNet modules

The following figure represents the situation of the Portals and TNet drivers, p3.mod and
tnet.mod respectively. In TNet, the driver is used for initialization and interrupts (applica-
tions can talk directly to the NIC); the Portals 3 module is used for any call (by forward
from the application and RTS/CTS from the network).

FIGURE 3.1. Comparing the CPlant and TNet environment

In both cases, communication between application and driver is done using the ioctl func-
tion that can perform a variety of control functions on devices. A filedescriptor that refers
to the corresponding device (/dev/portals3 respectively /dev/tnet0) is passed as first argu-
ment. The low level part of the TNet driver is built together with the relevant FCI func-
tions into one module. On Cplant, a separate kernel module (RTS/CTS) for

RTS / CTS
rtscts.mod

Firmware (Myrinet)
rtsmcp

IP
myrip.mod

Portals 2
portals.mod

Portals 3
p3.mod

IO
(temp)

Firmware (TNet)
cc_b35_lc_c35

Application
(MPI) on Portals

Application
(MPI) on FCI

TNet Driver
tnet.mod

FCI

tnet

FCI

lib_myrnal

lib-p30

myrnal > forward PTL_IFACE_MYR

The Portals over TNet Project 21

Design Concepts

communication to the device can also be addressed by the older Portals 2 and the IP mod-
ule.

3.2.2 Hybrid module

The idea of the following design is to build a hybrid module that supports FCI and Portals
3 calls at the same time. This requires modification in the Portals 3 and the TNet code. A
new network abstraction layer for TNet called TNAL will distinguish different forward
“jumps” using the PTL_IFACE definition.

FIGURE 3.2. The P3oT hybrid module

The result is called “Portals 3 over TNet module” (P3oT.mod) which accepts Portals 3
calls using PTL_IFACE_T and communicates over TNet using the current firmware.

This concept has been presented in this form on a weekly meeting of the Scalable Systems
Lab at the University of New Mexico. The implementation is based on this concept.

RTS / CTS
rtscts.mod

Firmware (Myrinet)
rtsmcp

IP
myrip.mod

Portals 2
portals.mod

P3oT
P3oT.mod

IO
(temp)

Firmware (TNet)
cc_b35_lc_c35

Application
(MPI) on Portals

Application
(MPI) on FCI

FCI

tnet

FCI

lib_tnal

lib-p30

tnal > forward PTL_IFACE_T

Design

22 The Portals over TNet Project

3.2.3 Communication

In the designed P3oT module, communication is handled in kernel mode. As a lot of time
is already spent to jump into the kernel, the communication technique (CMB or Pagetable)
becomes less significant in terms of latency. For this design, a contiguous memory block
has been chosen to make a first implementation easier. Every incoming and outgoing
transfer passes through the preallocated memory area.

FIGURE 3.3. CMB communication model

The pagetable on the NIC is used to build a virtually contiguous memory block in the
main memory of the host. Dataflow is represented by thick arrows on figure 3.3. The
driver copies the messages from userspace to the CMB and vice versa. Transfers between
NIC and host memory are done using DMA.

P3oT
P3oT.mod

tnet

FCI

lib_tnal

lib-p30

Application
(MPI) on Portals

CMB

Firmware (TNet) - Pagetable set up for virtual CMB
cc_b35_lc_c35

tnal > forward PTL_IFACE_T

The Portals over TNet Project 23

CHAPTER 4 Implementation

The content of this chapter represents the practical third of the Portals over TNet Project
(besides analysis and design). After the setup of the development system, the two refer-
ence environments (Portals/Myrinet and FCI/TNet) are installed and serve as a basis for
the project. The final product of this project, the P3oT module, is discussed in detail in the
following sections.

4.1 Development System

Part of this project was to setup the environment for the development from bottom up.
This includes the procurement of the hardware (computers, network cards) and the instal-
lation of the software (OS, applications, drivers). The computers that have been chosen
for the development system are Compaq Alpha workstations (164LX) because of two rea-
sons: first, at the begin of the project, TNet only ran under Tru64, an operating system by
Compaq for their Alpha boxes - and second, Portals is actually used at Sandia National
Laboratories on a Compaq Alpha cluster, the CPlant.

FIGURE 4.1. Development System at the Scalable Systems Lab, UNM

Implementation

24 The Portals over TNet Project

Each systems is equipped with a 21164 alpha processor, a 4.5 GB UW-SCSI hard disk,
320 MB memory and 100BaseT, Myrinet & TNet network interface cards. The graphic
controllers have been removed as these computers are not used as workstations. To access
the BIOS and the main console when no network connection is available (rebooting sys-
tem, testing new kernels, system message outputs) the 164LX supports tty’s on the first
serial line. A PC based Linux box is used to remotely access the serial consoles by con-
necting the ports with a null modem cable. A telnet or SSH session to this Linux box fol-
lowed by starting cu or minicom on the corresponding serial device will then redirect the
main console prompt to the terminal emulation. This is commonly known as a terminal
server.

FIGURE 4.2. Development System network topology

In an early phase, both systems are capable of booting either Compaq TRU64 (v 5.0) or
RedHat Linux (v 6.2, kernel 2.2.14) by selecting the flags on the boot command in the
SRM BIOS console (“boot” starts TRU64, “boot dva0 -fl 1” launches Linux).
TRU64 has only been installed to get familiar with TNet, including FCI, MPI and Cosmos
to install it later on Linux for the project. If TRU64 is not longer used, it is removed and
the boot partition will hold the Linux kernel.

The software development is entirely done under RedHat Linux and GNU C. To start the
programming from a working system, a mini CPlant using Myrinet and a TNet environ-
ment coexist under Linux. The tricky part is to apply the kernel patches that are needed for
CPlant so that the TNet modules are still insertable and the kernel remains stable.
This two node development system now serves for any experimentation with Portals and
TNet using a remote terminal.

100BaseT Ethernet

JEMEZ
(Terminal Server)

LAN - Internet

Remote
Workstation

TTYS01 TTYS02

Myrinet

TNet

BETA GAMMA

null modem cable

The Portals over TNet Project 25

Setup

4.2 Setup

The setup of the project environment involves the merging of two independent schemes,
TNet and CPlant. This is accomplished by assimilating the TNet hierarchy into Cplant and
developing the new module there. Following this scheme, a CPlant Makefile calls one of
the original TNet Makefiles when needed, allowing the TNet object files to be compiled
the same as before. These object files are then linked with the appropriate CPlant files to
complete the module. The only change to the TNet environment needed is to let the Make-
files know where to find the new Portals header files.

The CPlant hierarchy is complicated, but only a few key regions are important for devel-
opment. Compilation under the CPlant environment is made modular by allowing every
subdirectory to have its own Makefile that is responsible for calling the Makefiles of its
subdirectories recursively. Therefore, only the local Makefile is changed when part of the
hierarchy is modified. Of course, the most important region for development is the loca-
tion where the module specific files are located in ~/Cplant/top/compute/OS/portals/P3oT
(i.e. the library side NAL). A new Makefile is added here to compile and link the appropri-
ate files from Portals as well as the TNet object files.

4.3 TNAL

TNAL, the network abstraction layer for Portals over TNet, consists of a API- and LIB-
side. The implemented version is based on the software design in chapter 3.

4.3.1 API-side NAL

4.3.1.1 Architecture

The API-side implementation of the NAL is the shorter part. The forward function has to
pass TNet specific calls instead of Myrinet calls.

FIGURE 4.3. API-side NAL for TNet

The interface that is opened through forward is called PTL_IFACE_T. The code extracts
in the following sections will explain the changes in tnal.c.

api-p30/*

tnal.c

Application
(USER)

 forward

Implementation

26 The Portals over TNet Project

4.3.1.2 Code extracts

The three main functionalities in tnal.c are open & close of the device & library and for-
ward, which is used for all transactions out of the user mode.

• P3DEV addresses the Portals 3 device, in this case it is defined as “/dev/tnet0” as the
network interface is TNet. PTL_IFACE_T opens, after some checks, the device for
read and write by using p3fd as filedescriptor. Before the Portals 3 library can be
opened, some setup information on the CMB & gcw (see LIB-side NAL) is stored in
topen and passed together with the PTL_OPEN instruction down to the driver using
ioctl.

nal_t * PTL_IFACE_T(int interface,
ptl_pt_index_t ptl_size,
ptl_ac_index_t ac_size)

{..
p3fd = open(P3DEV, O_RDWR)
..
ioctl(p3fd, TNET_PTL_OPEN, &topen)
..}

• Data is transfered across the protection domain by forward, which after packing all
arguments in tforward calls ioctl. The library will then use PTL_DISPATCH to handle
the message to the Portals library.

static int forward(nal_t *nal,
int id,
void *args,
size_t args_len,
void *ret,
size_t ret_len)

{..
ioctl(p3fd, TNET_PTL_DISPATCH, &tforward)
..}

• Before the device can be closed, the Portals library has to be closed first. Both instruc-
tions are called in the shutdown function. Again, ioctl is used to pass PTL_CLOSE to
the library.

static int shutdown(nal_t *nal, int interface)
{..
ioctl(p3fd, TNET_PTL_CLOSE, NULL)
..
close(p3fd)
..}

The Portals over TNet Project 27

TNAL

4.3.2 LIB-side NAL

As seen in chapter 3, the design of this preliminary implementation of Portals over TNet
consists of a hybrid kernel module supporting Portals 3 and FCI. Of course, FCI could be
removed to make the driver smaller but this would have no effect on performance and as
this work is in a development state, it could be useful for testing or benchmarking.

4.3.2.1 Architecture

The design makes usage of the TNet driver (tnet.c) to replace the hardware dependent
calls to Myrinet in the library-side NAL.

FIGURE 4.4. LIB-side NAL for TNet

The driver communicates to the application with ioctl. This call is much more functional
in the TNet system (firmware download, configuration, card management, etc.). The three
new cases TNET_PTL_OPEN, TNET_PTL_CLOSE and TNET_PTL_DISPATCH were
therefore added in the file tnet.c to extend the functionalities for Portals 3.

Communication to the network card is done through the contiguous memory block. Data
is written and read using the global communication window (gcw).

4.3.2.2 Dataflow

In a preliminary phase, data is always passed through the CMB. To make a first imple-
mentation simple, the contiguous memory block is divided by twice the number of remote
nodes in the cluster (once for send and once for receive). The development system con-
tains two nodes, thus one node is called remote and therefore the CMB is divided by two
(one area to send to the other node and one for receiving messages).

 lib-p30/*

lib_tnal.c
tnet.c

FCI

 ioctl

 gcw, CMB

Implementation

28 The Portals over TNet Project

FIGURE 4.5. Contiguous Memory Block separation

This preliminary solution doesn’t scale and should not be used in any further implementa-
tion.

4.3.2.3 Code extracts

Compared to the API-side NAL, modifications in the code for the LIB-side are much more
complicated. The following extracts should help to understand the principle that was
applied to build the P3oT kernel module.

• In tnet.c, three new cases to TNET_ioctl (performing the ioctl functionality) support
now open, dipatch and close calls to the Potals 3 library.

case TNET_PTL_OPEN:
..
open_lib_tnal(..);
..
break;

case TNET_PTL_DISPATCH:
copy_from_user(..);
lib_dispatch(..);
copy_to_user(..);
..
break;

case TNET_PTL_CLOSE:
..
close_lib_tnal(..);
..
break;

• For an incoming call in form of a remote interrupt (at the moment this is the case for
any transferred message), the header is copied out of the CMB and given as an argu-

 IN

 OUT

BETA

 IN

 OUT

GAMMA

The Portals over TNet Project 29

TNAL

ment to lib_parse (see lib_tnal.c). This has to be done only if open_lib_tnal has been
called before. Otherwise it is not a Portals program doing this remote interrupt.

if(tnal_cb != NULL && tnal_data != NULL)
{..
memcpy(&hdr, tnal_data->cmb_kernel + (RECVBASE /
sizeof(TNET_UInt32)), sizeof(ptl_hdr_t));
lib_parse(tnal_cb, &hdr, NULL);
}

Once lib_dispatch is executed and arguments are passed, the library performs its opera-
tions. The good thing about the NAL is, that the design of a new network abstraction layer
doesn’t require deep knowledge on API or library. After the “magic” happened in the
library, different calls to lib_tnal.c can occur. The following functions are implemented
among others in lib_tnal.c. Most of the work was done in open, close, send, recv and
write.

• Opening and closing the library through ioctl:

open_lib_tnal(struct inode *inode,
struct file *file,
void *gcw_user,
void *cmb_user,
TNET_UInt32 gcw_length,
TNET_UInt32 cmb_length,
void *gcw_kernel,
void *cmb_kernel)

close_lib_tnal(void)

• Send simply copies header and data into the CMB and sends the content using DMA
transfer mode. The private field in tnal_send is a NAL-specific value that will be
passed to any callbacks produced as a result of this API call (in this implementation,
*private is NULL). The cookie is a pointer to a library private value that is passed to
lib_finalize once the message has been completely sent. It should not be examined by
the NAL for any meaning. The destination node is addressed with dnid. Process, group
and rank id are, as this is also the case for Myrinet, not used. A pointer to the data in
user space and its length are the last arguments in this functions.

static int tnal_send(nal_cb_t *nal,
void *private,
lib_msg_t *cookie,
ptl_hdr_t *hdr,
int dnid,
int pid_in,
int gid_in,
int rid_in,
user_ptr data,
size_t len)

Implementation

30 The Portals over TNet Project

As the Portals header information for the message to be sent is already in the kernel, it
can be copied to the send portion of the allocated CMB with a simple memcopy.
Because the pointer to the CMB is 32 bit aligned, the offset calculation must be
divided by sizeof(TNET_UInt32).

memcpy(nal_data->cmb_kernel + (SENDBASE / sizeof(TNET_UInt32)),
hdr, sizeof(ptl_hdr_t));

The message body instead is copied to the CMB from user space.

copy_from_user(nal_data->cmb_kernel + ((SENDBASE +
sizeof(ptl_hdr_t)) / sizeof(TNET_UInt32)), data, len);

The message is then sent out of the CMB in packets. The last packet carries the remote
interrupt flag to wakeup the target, which will then copy the data out of its CMB into
the application.

for(j=0;j<PACKETS;j++)
{
targetaddr = RECVBASE + j*PDIS;

nal_data->gcw_kernel[0]=
/* destination id */
(dnid & TNET_APP_SEND_DESCRIPTOR_IDMASK) |
/* message type */
TNET_APP_SEND_DESCRIPTOR_UNICAST |
/* mapping type */
TNET_B_APP_SEND_DESCRIPTOR_DIRECTMAPPED |
/* descriptor pattern */
TNET_B_APP_SEND_DESCRIPTOR_PATTERN |
/* rti id */
((TNET_APP_REMOTEINTERRUPT_ID_FLAG3<<24) &
TNET_B_APP_SEND_DESCRIPTOR_RTI_MASK);

nal_data->gcw_kernel[1]=(PLEN>>2);
nal_data->gcw_kernel[2]=(targetaddr>>2);
nal_data->gcw_kernel[3]=((targetaddr>>34) &
TNET_APP_SEND_ADDRESS_MSDW_MASK)
| TNET_APP_SEND_ADDRESS_MSDW_PROC(0x0);
mb();

/* write the data */
dma.target_gcs_base=0;

//TNET_DMA expects a user space address for the cmb
dma.source_virt_base=(void *)(nal_data->cmb_user + (SEND-
BASE+j*PDIS)/sizeof(TNET_UInt32));
dma.length=PLEN;
TNET_Ctl(nal_data->inode, nal_data->file, TNET_DMA, (void

The Portals over TNet Project 31

TNAL

*)(&dma))
}

After all packets are delivered, the library is informed with lib_finalize so Portals can
update the event queue for the memory descriptor.

lib_finalize(nal, private, cookie);

• The function write is essentially a cross-protection domain memcopy using
copy_to_user and is not discussed here. Receive instead is called in response to
lib_parse, reads mlen bytes and deposits them into data.

tnal_recv(nal_cb_t *nal,
void *private,
lib_msg_t *cookie,
user_ptr data,
size_t mlen,
size_t rlen)

Because the data is already arrived and sits in the CMB, tnal_recv just has to copy it to
user space and call lib_finalize with the lib_msg_t *cookie.

copy_to_user(data, nal_data->cmb_kernel + ((RECVBASE +
sizeof(ptl_hdr_t)) / sizeof(TNET_UInt32)), mlen);

lib_finalize(nal, private, cookie);

• Since the NAL may be in a non-standard hosted environment it can not call malloc.
This allows the library side NAL to implement the system specific malloc. In the cur-
rent reference implementation the library only calls nal->malloc when the network
interface is initialized and then calls free when it is brought down. The library main-
tains its own pool of objects for allocation so only one call to malloc is made per object
type.

tnal_malloc(nal_cb_t *nal, size_t size)
{..
vmalloc(size)
..}

tnal_free(nal_cb_t *nal, void *ptr)
{
vfree(ptr);
}

Implementation

32 The Portals over TNet Project

4.4 Testing

Once the module is built, it must be loaded on both machines before it can be used. To
accomplish this, a script was written that automatically copies the module to the /cplant/
modules directory as well as the corresponding directory on the other machine (test pro-
grams are also copied at this point), unloads the previous modules if they are still running
and loads the new module along with several others. Because Portals 3 is still in the devel-
opment stage, other modules are required to perform fundamental tasks. For example, the
old Portals 2 module is sometimes used to initiate a job by synchronizing information on
both nodes. This and other helper modules are loaded in the following order: portals.mod
(Portals 2), rtscts.mod, myrIP.mod and, finally, the new P3oT.mod is loaded last.

With the help of the Portals 2 module, a test program can be run atomically from the Por-
tals 3 testing directory (~/Cplant/top/compute/OS/portals/p3tests). These tests are com-
piled together into p3test, so they can be run one after the other and test all aspects of the
Portals implementation. Using this program, preliminary results show a latency of around
80 microseconds for the P3oT module. It should be noted that this figure comes from an
initial implementation with no optimizations and which still includes one memory copy to
or from the CMB per node and an OS call upon sending. When these time consuming
activities are circumvented, the latency will be much less.

The Portals over TNet Project 33

CHAPTER 5 Conclusion

After a short recapitulation on the results of this project, some prospects about further
work on Portals over TNet are presented. A final commentary is given about the overall
project experience.

5.1 Results

The evaluation of the possibility to implement Portals 3 on TNet has been discussed in the
design and shown in form of a preliminary software implementation. The experience that
was obtained during this project is reflected in this report and will help for future research.

Even though the current implementation is in an alpha state, TNet offers some benefits
compared to Myrinet. The CRC generation and checking is done in hardware. Together
with the retransmit protocol, Portals 3 can be executed over a high reliable network. The
P3oT module could in a next state be improved and eliminate costly interrupt calls. Imple-
menting blocking calls would reduce latency highly.

A hardware implementation instead would result in a much longer project time as the Por-
tals 3 library would have to be rewritten in vhdl. With the current solution, parts of portals
can now be tested on TNet. The P3oT module serves as a running start point to go to the
next implementation level.

Conclusion

34 The Portals over TNet Project

5.2 Prospects

The following design idea uses a modified Portals 3 library that is compiled together with
the API into the applications. This solution will make use of the current TNet firmware
and use the pagetable and the ID validation table on the NIC as a different implementation
of match lists and memory descriptors. Because pagetable entries do not correspond to the
format of memory descriptors, the library would have to be updated.

FIGURE 5.1. Design draft for next PoT implementation step

Remark: The design on figure 5.1 is only a draft. A deeper analysis is required in order to
start the implementation.

5.3 Commentary

The field of High Performance Computing is very interesting but also challenging. Inter-
esting, because of the variety of the work. A network designer deals with the hardware as
well as with the software to make the “glue” that connects both worlds in an optimal way.
The challenge could be described as “the art to make it run”. It requires a wide range of
knowledge and perseverance to implement the ideas of a new design.

P3oT
P3oT.mod

tnet

FCI

lib_tnal

lib-p30

Application
(MPI) on Portals

Firmware (TNet) - Pagetable points to Appl. Space
cc_b35_lc_c35

tnal > forward PTL_IFACE_T API & modified P3 Library

The Portals over TNet Project 35

CHAPTER 6 References

[1] Ron Brightwell, Tramm Hudson, Rolf Riesen, Arthur B. Maccabe
The Portals 3.0 Message Passing Interface
Sandia National Laboratories & The University of New Mexico, 11/1999

[2] Message Passing Interface Forum
MPI: A Message-Passing Interface Standard
University of Tennessee, 1995

[3] William Gropp, Ewing Lusk
User’s Guide for mpich, a Portable Implementation of MPI Version 1.2.0
Argonne National Laboratory, University of Chicago, 12/1999

[4] Martin Lienhard, Martin Heimlicher
TNet PCI Adapter Specification
Supercomputing Systems AG, 05/1999

[5] Josef Nemecek, Martin Frey
TNet Driver Specification
Supercomputing Systems AG, 10/1999

[6] Martin Frey
TNet CMM Library
Supercomputing Systems AG, 10/1998

[7] Stephan Brauss, Martin Frey
TNet Message Passing Specification
Supercomputing Systems AG, 10/1999

[8] FCI, Fast Communication Interface
Swiss Federal Institute of Technology Zurich & Supercomputing Systems, 2000

References

36 The Portals over TNet Project

[9] Peter S. Pacheco
Parallel Programming with MPI
Morgan Kaufmann Publishers, ISBN 1-55860-339-5, 1997

[10] Alessandro Rubini
Linux Device Drivers
O’Reilly, ISBN 1-56592-292-1, 02/1998

[11] The Official Red Hat Linux Alpha/SPARC Installation Guide
Red Hat, Inc, 2000

[12] Adrian Riedo
The Portals over TNet website, important links to HPC sites
http://hpc.fribyte.ch, 2000

The Portals over TNet Project 37

APPENDIX A Technical Abbreviations

API Application Programming Interface

ASIC Application Specific Integrated Circuit

BIOS Basic Input Output System

CC Communication Controller

CMB Contiguous Memory Block

CPlant Computational Plant

CRC Cyclic Redundancy Check

DMA Direct Memory Access

FCI Fast Communication Interface

FIFO First In First Out

FPGA Field Programmable Gate Array

GBE Gigabit Ethernet

GCW Global Communication Window

HPC High Performance Computing

IP Internet Protocol

Technical Abbreviations

38 The Portals over TNet Project

LAN Local Area Network

LC Link Controller

LIB Library

MCP Myrinet Control Program

MPI Message Passing Interface

NAL Network Abstraction Layer

NIC Network Interface Card

OS Operating System

P3oT Portals 3 over TNet module

PCI Peripheral Component Interconnect

PoT Portals over TNet

RISC Reduced Instruction Set Computer

RTS/CTS Ready To Send / Clear To Send

SAN System Area Network

SDRAM Synchronous Dynamic Random Access Memory

SRAM Static Random Access Memory

SSH Secure Shell

TCP Transmission Control Protocol

VAS Virtual Address Space

VCA Virtual Communication Address

VHDL Very high speed integrated circuit Hardware Description Language

VLSI Very Large Scale Integration

