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Abstract

The goal of this project is to develop a high quality implementation of the
Portals API for the Interceptor network. This implementation will be based
on the Portals reference implementation and an existing Linux driver for
Interceptor. Because the Portals API and the original Interceptor driver
both support MPI, we will evaluate the success of this project by measuring
performance on MPI applications. In addition to the standard bandwidth
and latency tests, we will also consider the ability of the implementation to
overlap computation with communication.

Background

We are primarily interested in providing support for ”resource constrained”
applications, applications that can be scaled to consume all of at least one of
the resources provided by a computing system (e.g., memory, communica-
tion bandwidth, processor capacity, etc.). Traditionally, these applications
were called ”Grand Challenge” problems. We prefer the name ”resource con-
strained”because it emphasizes the need to minimize overhead in the design
and implementation of systems level software.
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The Portals API was developed jointly between the University of New
Mexico and Sandia National Laboratories. The API was designed to support
high-performance communication in parallel, distributed memory systems
consisting of tens to hundreds of thousands of nodes. This API provides the
basis for variety of other services, including the system management software
used on ASCI/Red and Cplant, the Lustre files system being developed by
Peter Braam, and a high-performance MPI implementation.

The Interceptor network is a high-performance, scalable networking tech-
nology being developed at Super Computing Systems (SCS) in Zurich, Switzer-
land. This networking technology is aimed at the same environment that
the Portals API is aimed at and, as such, developing an implementation of
Portals for the Interceptor network will provide a good evaluation of the
applicability of this technology for future systems.

Approach

To avoid duplicating unnecessary work, our approach is to blend an existing
Linux driver for Interceptor from SCS with the prototype Portals imple-
mentation available from Sandia/UNM. The Linux driver will provide much
of the basic functionality needed and will provide examples of sending and
receiving messages on the Interceptor network.

The prototype Portals implementation was designed to support mov-
ing functionality among the application, the operating system, and special-
ized processors, e.g., processors on programmable Network Interface Cards
(NIC). The Portals implementation achieves this ability to migrate function-
ality by using ”call forwarding.” In call forwarding, any internal library call
can be replaced by an indirect call which builds a parameter block and issues
the appropriate linkage (e.g., using an OS trap or by appending the param-
eter block to a buffer of NIC requests) to forward the call to the location
where the needed functionality is best implemented.

In addition to call forwarding, the Portals prototype implementation
uses a Network Abstraction Layer (NAL) to hide the details of the network
activities involved in sending and receiving packets.

Porting the Portals prototype implementation involves implementing the
NAL and deciding where different parts of the functionality needed for the
interface should be implemented. The latter of these tends to take more time
and has a greater impact on the quality of the resulting implementation.

Because the Interceptor NICs are not programmable, we can not con-
sider implementing any of the Portals functionality on the NIC. However,
the ability to move functionality between the application and the operating
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system will be critical to providing a high quality implementation of Portals
on Interceptor NICs. As such, the implementation will be based on one or
more kernel threads in addition to the Portals library.

Because we are interested in providing support for resource constrained
applications, we will not consider the possibility of multiple processes on a
node. A single application may be multithreaded; however, issues related to
multithreading are assumed to be handled at a higher level in the Portals
library and will not be considered directly in this implementation. As such,
the implementation can use the virtual NICs provided by the Interceptor
NICs for implementing different parts of the Portals API.

Specific Tasks and Milestones

Task 1. Identify and evaluate workstations to be used in this project.

The goal is to determine the requirements for the workstations used
in the experiments and to run baseline benchmarks evaluating the
performance of the basic Interceptor drivers on these machines.

Milestone: running the ping-pong and bandwidth applications avail-
able from SCS.

Task 2. Become familiar with SCS Interceptor Linux driver.

Here, the goal is to understand the Interceptor NICs and the code
used in the Linux driver to the extent that we can consider alternative
implementations for the Portals port.

Activities: read Interceptor documentation, read driver code, and
interact with the appropriate engineers at SCS.

Milestone: Introduce a kernel thread that responds, using interrupts,
to a message in one of the ring buffers. The message in the ring buffer
will describe a logical memory region in the local process (e.g., a 32-bit
starting address and a length). In response, the kernel thread will reply
with the portion of the application’s page table (physical addresses)
covered by the logical memory region.

Task 3. Become familiar with the Portals API and the prototype Por-
tals implementation.

Activities: read Portals documents, papers related to Portals, and
the code for the prototype implementation.

Milestone: a design document describing the approach to be used in
implementing Portals using Interceptor NICs.
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Task 4. Port the prototype Portals implementation to the Interceptor
network.

Activities: based on the design developed in Task 3, identify at least
two intermediate steps and measurements that can be used to demon-
strate progress.

Milestone: ability to run several MPI programs that use the MPI
over Portals libraries.

Task 5. Measure the quality of the implementation.

Activities: compile, run, and evaluate a suite of MPI benchmark pro-
grams. As a minimum, these programs will include a bandwidth test, a
latency test, and a test that measures the effectiveness of computation
and communication overlap.

Milestone: Analysis of results

Task 6. Write-up and defend diploma thesis.

Prof. Barney Maccabe Prof. Gerhard Tröster

The University of New Mexico Swiss Federal Institute of Technology
Albuquerque, USA Zürich, Switzerland
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Chapter 1

Introduction

1.1 Basics

In the past there where two approaches to build supercomputers. The first
one was to build a very powerful CPU and to connect a few of them together.
These VLIW (very long instruction word) CPUs operated on vectors and
could therefore perform the same operation on a large number of variables at
the same time. These architectures were expensive and their size was limited
because of the limited scalability of the shared memory architectures. The
second approach, that became the common case when cheap bulk hardware
was available, was to use standard computers and connect them to a cluster.

1.2 Message Passing

A widely used paradigm for process intercommunication between different
machines is message passing. The Message Passing Interface MPI is
the de facto standard for writing programs that run on parallel machines
(http://www.mpi-forum.org/, a good introduction can be found in [10]).

1.3 Zero Copy, OS Bypass and Application Bypass

A good message passing implementation will avoid memory copies because
network bandwith approaches memory bandwith on high performance clus-
ters. Zero-copy NICs that directly access the memory space of the appli-
cation have become the state of the art. Intelligent NICs that have their
own processor are even capable to control the transfer of incoming mes-
sages without needing to interrupt the CPU. Because this strategy does not

1



2 CHAPTER 1. INTRODUCTION

need to involve the OS on every message transfer, it is frequently called
“OS Bypass.” Many protocols that support OS Bypass still require that
the application actively participate in the protocol to ensure progress. This
complicates the runtime environment, requiring a thread to process incom-
ing requests, and significantly increases the latency required to initiate a
long message protocol. The term “Application Bypass” refers to the
technique where no intervention of the application or an application level
thread is needed to ensure progress. (After [1, Portals Documentation]).



Chapter 2

The Intercept Network

Intercept is a complete network including hardware and software for high
performance computing that has been developed by Supercomputing Sys-
tems (SCS), Zürich, Switzerland.

The information presented here is a brief summary of several talks from
Supercomputing Systems.

2.1 The Hardware

2.1.1 Network Properties

All packets in the network are protected with a CRC-32 checksum. The
network uses a link-to-link retransmission to retransmit lost and cor-
rupt packets. One acknowledge packet is sent back at every link for every
correctly received data packet. A retransmission request packet is sent back
at every link, if a corrupt packet is received. Up to seven packets can be
outstanding on a link.

2.1.2 Network Packets

Network Layer

Currently the firmware supports multicast and destination based unicast
packets. A unicast packet contains a 16 bit Intercept unicast address which
gives a total of 65536 possible nodes. Source based routing functionality will
be added in the future.

3
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Transport Layer

Currently there are three different types of packets.

• Virtual DMA packets contain a 2 bit channel number and a 25 bit
channel virtual address.

• Short message packets contain 0-63 qwords of data (0-504 bytes).

• Short message command packets are used to send flow control
commands.

Moreover the NIC supports

• two-sided communication for MPI 1.2 (sender and receiver take part
of a communication)

• and one-sided communication for MPI 2.0 (GET / PUT from re-
mote process without interaction of the remote CPU).

2.1.3 64 Bit PCI-X Network Interface Card

The NIC acts as 16 independent virtual NICs. Each application process
gets its own virtual NIC. This eliminates the need to obtain a lock to ac-
cess the hardware. Therefore an application can immediately access the NIC
without any lock-latency. 15 VNICs are provided to the user, one is reserved
for the VDMA handler 2.2.2. The network is built out of four indepen-
dent networks with 2.5 Gbit/s each. These networks are called planes.
Together they achieve the full bandwith of 10 Gbit/s. No physical connec-
tions exist among them. Each packet has a mask that specifies over which
planes it may be sent. The firmware distributes the packets equally over all
available planes. The motivation for this architecture was to increase fault
tolerance and to lower the hardware cost. To meet the low latency and high
bandwith requirements two protocols are used:

• A low latency protocol for short messages with very little overhead.

• And a high bandwith protocol for long messages with zero copy
and direct memory access which adds overhead.

Each VNIC provides one receive circular buffer (RX-CB) (1-128 MB)
and two transmit circular buffer (TX-CB) (64 KB). Both buffers reside
in host memory. The NIC has one physical interrupt that is demultiplexed
in software over the 16 VNICs. A virtual interrupt may be raised for every
received packet or only for marked packets.



2.1. THE HARDWARE 5

CB Protocol

The TX-CB contains the transfer commands and data as well. This allows
pipelined setup of several transfers without waiting for the NIC to became
ready to transfer the next packet.

• Direct transfers contain short messages; the data is directly copied
into the TX-CB (but it may be sent using zero copy as well). On the
receiving side the data always has to be copied.

• Indirect transfers consist of the DMA command only.

As a consequence of the four planes, incoming packets from one sender may
arrive in a different order at the receiver (if the packets are allowed to be
sent over more than one plane). Packets from different senders may be
shuffled at the receiver as well (Fig. 2.1). The defragmentation has to be
done in software.

3 2 1sender A

3 2 1sender B

3B3A2B receiver1B2A1A

Figure 2.1: Packets from different senders may be shuffled at the receiver.

Virtual DMA Protocol

The virtual DMA protocol ressources consist of four channels, each chan-
nel has a page table with 256 entries, a packet counter and a virtual
interrupt. With 1024 page table entries and 4 KB page size, 4 MB of
memory can be mapped. Transfers must be segmented into 1 MB blocks by
software (256 entries per pagetable x 4 KB page size = 1 MB). With this
technique a VDMA transfer may be running and the software can set up
the next three transfers in advance. Only one transfer is sent / received at
a time in order to avoid network contention. Since the hardware counts the
incoming packets, an interrupt is raised for every received 1 MB block. This
reduces the number of interrupts to a very low amount (less than 1000 a
second for full bandwith). The data packets arrive unordered but the soft-
ware will not notice since the NIC notifies the software only when the full
block is received.
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Technical details

The 64 Bit PCI-X nic consists of the folliwing major parts:

• CC: The communication controller is a XilinX XC2V3CCC-4
that provides 14336 slices with 2 flip-flop and 2 look-up tables each.
The current firmware provides two-sided communication and 8 VNICs.
With this configuration, FPGA is about 33% full.

• SDRAM: The 128 MByte SDRAM will be used completely for
one-sided communication (when the firmware is done). The nic may
be upgraded to up to 512 MB of SDRAM.

• SRAM: A 4 MBit SRAM chip is used for end-to-end retransmission
(see 2.1.1). More than 50% are used. The nic can hold up to 16 MBit
of SRAM.

• Four optical modules: Each optical module represents a plane.
The user controlls the number of connected and available planes.

2.1.4 Switches

The Intercept network is build of 32 port switches. The contain a full
bandwith crossbar and use cut-through routing. Since they switch
each plane separately they can be configured as

• 8 x 4 planes switch module

• 16 x 2 planes switch module

• 32 x 1 planes switch module

2.2 Software

2.2.1 System Overview

The MPI application performs the actual work and communicates with
the other instances on other nodes through the MPI libarary. The MPI li-
brary itself is based on the FCI (Fast Communication Interface) library that
builds the heart of the communication interface. It supports OS bypass for
short messages. Long messages are sent over the Intercept Device Driver.
It contains a VDMA handler that coordinates all VDMA transfers of the
application processes.
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MPI Application

MPI library

FCI library

FCI
OS bypass

Device Driver
VDMA handler

Intercept NIC

Figure 2.2: System overview.

2.2.2 VDMA handler

The Linux device driver is the most relevant part in this system for the
Intercept port of Portals. It manages the available nics and provides access
to the ressources (e.g. Virual NICs) on them to other drivers and application
processes. It loads the code for the communication controller and the link
controller into the FPGAs on the nic and initializes it. The device driver
also provides a VDMA handler that is used to bundle all VDMA transfers.
Altough every userspaceprocess could start a VDMA transfer by allocating
a VNIC from the device driver and writing a VDMA transfer into the TX-
CB of the VNIC, there must be some kernelspace code that parses the page
tables of the userspace process and sets the VDMA page table up. Since
the VDMA engine is shared between all VNICs there must be a lock or a
commont point where all the transfers are initiated. A separate driver has
furthermore the advantage that VDMA transfers may be set up pipelined.

The following section gives a brief overview of the internal function of
the VDMA handler as far as it’s needed to understand the implementation
of the Portals driver for Intercept. More information can be found in [8].

As soon as the Linux device driver is started up, it launches the VDMA
kernelthread that handles all the VMDA transfer requests from the userspace
clients or from a remote machine. One VNIC is reserved for the VDMA
handler to exchange control and flow control messages between the VMDA
handlers on different nodes.

All procedures that involve a communication with another VDMA han-
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dler are done in the kernelthread. Therefore the VDMA handler internally
uses a bunch of queues. Almost every ioctl() command adds a new request
to a queue that is to be processed by the kernelthread.

The VMDA handler implements a connection-based communication
protocol. Every userspace process that wants to communicate with a remote
process has to announce at startup to which processes on which nodes it
wants to talk.

The flow control is credit-based: Every nodes gets an initial credit to
begin with. If the credits drop to zero it has to stop sending and must wait
for incoming credits (the credit is updated by the receiver). The credit is
big enough to hide the latency of the flow control mechanism in order to
saturate the link.

There are two different VDMA commands: a read and a write com-
mand. This distinction is only made in software (it simulates the write
command). The hardware knows of only one kind of VDMA transfer. If a
process wants to read remote memory then the transfer is sliced into 1MB
slices (See 2.1.3). The handler sends a VDMA GET message over the TX-
CB of its own VNIC to the remote peer VDMA handler for every slice. To
write to remote memory a VDMA PUT command is used. The following
is a short description of how these commands are implemented.

• VDMA GET: The initiating VDMA handler sets up the page tables
and sends a GET request to the remote VDMA handler for the next
slice that sets up its page tables and starts transferring the data. When
the packet counter on the receiver has reached zero, the NIC raises an
interrupt and the VDMA handler starts the transfer of the next slice
as described before. The packet counter on the sender will drop to zero
first and the handler will release the VDMA channel. (Figure 2.3).

• VDMA PUT: Since the page tables have to be set up first, it is not
possible to start a VDMA transfer and hope the receiver will receive it.
The receiver always has to set up page tables and to reserve a channel
before it can actually receive data. Hence a real put operation is not
possible. The initiator therefore simply sends a VDMA PUT to the re-
mote handler that cuts the transfer into slices and sends VDMA GET
messages back to get the message. After the whole message is trans-
ferred, the remote handler sends a VDMA DONE control message
back to the initiator that can notify the userspace process of the com-
pletion of the transfer. (The reason for this additional message is that
the initator can know when a slice is sent but it cannot know when all
the slices are sended.) (Figure 2.4).
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The current hardware / firmware imposes the following limitations to
a VDMA transfer:

• The firmware requests that every buffer address has to be aligned to
one quadword (8 bytes). The VDMA handler accepts only transfers
that are aligned to four quadwords (32 bytes). (I was told that
the implementation was easier this way).

• The length of a message must be a multiple of one quadword (8
bytes) and must have a minimal length of three quadwords (24
bytes).

One VDMA handler kernelthread is started for every plugged network
card.
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Client
Process

VDMA
handler

NIC

Adds a read transfer
request to the transfer
request queue, wakes up
the VDMA handler
and sleeps.

Sets up the first slice of
the transfer on a
channel of the NIC.

Reads the indirect transfer setup and memory
descriptors from the TX-CB, and subsequently
reads the data from physical memory and
transfers it to the peer NIC. The receiver NIC
writes the data into the local physical memory
based on the previous channel setup.

Sends a ´get´ request to the peer VDMA handler (over TX/RX CB) 

Client
Process

VDMA
handler

NIC

Sets up an indirect
transfer as specified by
the ´get´ request, by
writing the corresponding
memory descriptors
into the TX-CB

tim
e

Sets a flag indicating
termination of the first
slice and raises an
interrupt (if needed)

Sets up the next slice
of the transfer on a
channel of the NIC

Sets up the last slice
of the transfer on a
channel of the NIC

Sets a flag indicating
termination of the last
slice and raises an
interrupt (if needed)

Updates the status of
the transfer and wakes
up the process

...

...

Figure 2.3: Processing of read requests / VDMA GET. Figure taken from
[8]
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Client
Process

VDMA
handler

NIC

Adds a write transfer
request to the transfer
request queue, wakes up
the VDMA handler
and sleeps.

The read transfer is processed slice by slice...

Sends a ´put´ request to the peer VDMA handler (over TX/RX CB) 

Client
Process

VDMA
handler

NIC

Sets up a read transfer
as specified by the ´put´
request. The read transfer
is handled like a read
transfer submitted my a
local client process.tim

e

Updates the status of
the transfer and wakes
up the process

...

Sets up the first slice of
the read transfer on a
channel of the NIC.

Sets a flag indicating
termination of the last
slice and raises an
interrupt (if needed)

Sends a ´done´ message to the peer VDMA handler (over TX/RX-CB)

Figure 2.4: Processing of write requests / VDMA PUT. Figure taken from
[8]



Chapter 3

Portals

3.1 Introduction

Portals is the message passing technology that was developed for the Cplant
[5] project at Sandia National Laboratories. It is designed to support the
scalability requirements to construct a commodity cluster that can scale up
to the order of ten thousand nodes. Portals is connectionless: a Process
is not required to explicitly establish a point-to-point connection with an-
other process to communicate. Portals is an OS Bypass and Application
Bypass protocol, although the current reference implementation does not
support them.

More information about Portals can be found in [1]. The source code is
free available through Sourgeforge:
http://sourceforge.net/projects/sandiaportals.

3.2 Portal Addressing

This section will give a short introduction to the Portals 3 addressing mech-
anism. A portal represents an opening in the address space of a process.
Portals combine the characteristics of both one-sided and two-sided com-
munication. A Portal matching get operation reads data from another
process, while a matching put performs a write operation.

Portals uses four components to address memory on a remote node: A
Process id, a memory buffer id / portal id, an offset within the
memory descriptor and a set of match bits. These match bits describe
a specific pattern that the incoming data must match to use that match
entry. Within each match entry is a list of memory descriptors that define

12
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a region in memory as well as the behavior associated with that region, like
how many and what kind of operations can be done using it. Although
the match entry contains a list of memory descriptors, only the first one
is considered when matching incoming data. Each memory descriptor can
contain an event queue that is updated when an operation is performed
on the region to let the application know what has happened.

3.3 Architecture

3.3.1 NAL

The implementation strategy of Portals 3 is to provide a highly platform and
network independent API for message passing applications. The concept of
a network abstraction layer (NAL) is used to make migration from one
network to another easy. Portals 3 is divided into two parts: an application
programming interface (API) and a library (LIB). Basically figure 3.1 shows
the software hierarchy, highlighting the relevant sourcefiles for the NAL.

api/
Application

(USER)A
P

I

nal.c

lib/ Driver
(KERNEL)

lib_nal.cLi
br

ar
y

Figure 3.1: Portals 3 NAL architecture.

It’s up to the user what kind of NAL they want:

• ”Kernel only NAL”, both API-side and LIB-side live in kernel. Por-
tals API calls can only be made from the kernel (qswnal, socknal, gm-
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nal). Since these NALs are not accessable from userspace, only other
kernel modules are able to use them. (E.g. [4, the lustre filesystem].)

• ”User only NAL”, both API-side and LIB-side live in userspace.
Portals API calls can only be made from user-level. (tcpnal, ipnal)

• ”Universal NAL”, API-sides for both user-space and kernel-space,
LIB-side lives in kernel. Portals API calls can be made from both
user-level and kernel level. (no universal NALs currently exist)

• ”Split NAL”, API-side in user space, LIB-side in kernel. Portals API
calls can only be made from user-space. (rtscts NAL)

• ”NIC NAL”, API-side in user space, LIB-side executes on the NIC.
(no NIC NALs currently exist)

• ”NIC and Kernel NAL”, API-side in user space, LIB-side executes
partially on NIC and partially in Kernel. Portals API calls can only
be made from user-level. (Mike Levenhagens Myrinet NAL)

3.3.2 Myrinet Driver

This section will give a brief overwiev of the Portals Myrinet Driver. It was
used as a reference implementation to understand how a user accessible NAL
works. Figure 3.2 illustrates the architecture.

The Portals api and the userspace side of the NAL are directly linked
to the application. All calls into Portals are forwarded through a forward
function in the userspace-side of the NAL. This function uses the ioctl()
function in the module P3mod, that dispatches the calls to Portals. The
whole Portals library resides completely in the kernel.

3.3.3 Portal dataflow

A Portal put will serve as an example look at the network abstraction layer
and the dataflow in Portals 3. Figure 3.3 shows the simplified situation of a
point-to-point put from the initiator to the target.

Figure 3.2 describes the simplified communication scheme that occurs
during a call to PtlPut. After some initial processing by the API, control
is passed down to the NAL. The NAL function forward calls ioctl, a Linux
system call for communicating with a module. The library side of the NAL
receives this call and immediately dispatches it to the Portals library, where
all of the data necessary for communication with another node is assembled
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Application
(MPI) on Portals

Libptlapi forward calls to NAL

Libmyrnal forward PTL_IFACE_MYR

P3mod Portals 3
RMPP
rtscts
Lib_myrnal

Firmware (Myrinet)
rtsmcp

userspace

kernelspace

hardware

Figure 3.2: Portals Myrinet Driver architecture.

and handed back to the NAL again. The NAL then calls the routines that
actually transmit the data over the NIC.

When the data arrives on the remote side, the incoming data handler
passes the appropriate information to the Portals lib parse routine and, con-
sequently, to parse put. This function finds the appropriate memory descrip-
tor, if one has been setup, and calls the library side NAL to actually receive
the data. The transaction concludes when nal recv calls lib finalize and the
appropriate event queue is updated in user space with a put event.

Some high-performance network cards (e.g. Gigabit Ethernet, Myrinet)
possess their own CPUs such that the underlying communication protocol
can be splintered to the NIC. Portals goes one step beyond that making it
possible for whole messages to be sent / received without interruption from
the host CPU. On advanced nics the Portals matching procedure may be
transfered to the NIC, in which case the application only receives START
and END events when a process takes place or ended. Figure 3.4 visualizes
this possibility. Portals supports another feature that some nics with on
board memory offer: It reads only the Portals header from the wire; the nic
is supposed to hold the transfer of the rest of the message back (it might
temporarly store it in the on-board memory). After Portals has analyzed
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Figure 3.3: Simplified example of a Portal put.

the Portals header it uses a callback function in the NAL and that informs
the nic where in memory it has to copy the message.

A very important characteristic of Portals is that it guarentees in-order
beginning of transfers but not in-order completion. This is important
when writing a driver.

(Parts of this chapter have been taken from [2]).
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Portals
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Driver
Module

NIC

Send_msg()
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Figure 3.4: Portals send message.



Chapter 4

Design

This chapter contains the study on different implementation possibilities and
the final design concept that has been chosen to build the Intercept driver
for Portals 3.

4.1 Case study

Portals makes the assumption that not every packet that the nic receives
has to be written into main memory. When a packet arrives it’s first stored
in on-nic memory. Afterwards the nic raises an interrupt and the host cpu
decides how many bytes of the packet it wants and starts the DMA transfer
from the nic memory to main memory. That methodology is not applicable
with the current firmware of the Intercept nic. Every packet arrives in main
memory. Therefore Portals has to be asked how many bytes to with memory
address it wants, before the transfer is started.

4.1.1 Pure software - VDMA handler’s CB

The simplest approach that someone could think of is to use the circular
buffer protocol of the VDMA handler to send every message. Remember
(2.2.2): Each VDMA handler allocates one VNIC for itself and uses its CB
to transmit VDMA set up and flow-control messages. This approach is easy
to implement but has several drawbacks:

1. Only 504 bytes per message can be transmitted through the CB
send and receive function of the VDMA handler. In order to transmit
bigger messages several major changes had to be made.

18
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2. The VDMA handler makes usage of extensive memory copies to
(un-)marshall messages.Maximal three copies are made on the sending
side: A copy from the userspace buffer to a temporarly kernelspace
buffer. Marshalling of the message into another buffer. And one copy
more if the TX-CB is full and the message has to be copied into a
temporarly queue. Two copies are needed on the receiver’s side: One
copy to unmarshall the message and one copy from kernelspace to
userspace.

3. The VDMA handler is (unlike Portals) connection based. Every
connection has to bestablished at program start in order to use it.
Fundamental changes in the VDMA handler are needed to change
that. Especially the flow-control is based on permanent connections.

4. This solution would completely miss out the VDMA protocol and
therefore never achieve the best possible transfer rates because the
memory copies would slow down the PCI-X bus.
⇒ The network bandwith is in the same region as the memory band-
with, hence each memory copy generates two additional memory ac-
cesses (read/write) - if even if we consider the fact that modern CPUs
have large caches. Since the message has to be copied packetwise into
the buffer, a copy is only about 500 bytes. The further copies are
done very fast in the caches but in order to start the transfer of the
message the driver uses a memory barrier causing the CPU to write
all unwritten data back into main memory.
Two additional memory copies would slow down the transfer rate to
one fifth!

5. Since single packets may get shuffled at the receiver, the VDMA han-
dler uses only one plane to keep the order of the packets. Therefore
only one quarter of the bandwith will be available!

4.1.2 Pure software - VDMA handler

The next better approach is to use VDMA transfers for every message. Every
message will be passed to the VDMA handler that sends it over the VDMA
protocol. This requires some additional control messages (4.1). Also some
restrictions concerning message size and alignement are present (2.2.2). A
driver that uses this design will have to deal with the connection based
nature of the VDMA handler as well.
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4.1.3 Pure software - VDMA handler & CB protocol in ker-
nelspace

This is a solution that combines the advantages of the short message and
the long message protocol. If a message is big enough then it will be sent
over the VDMA handler. The driver will allocats its own VNIC to send
small messages with the shortest possible latency. The decision when to use
which protocol will be made in the driver. In order to be able to use all
four planes and to have a flow-control, a new protocol has be be imple-
mented. The TX/RX circular buffer will be allocated in kernelspace
in order to keep the whole driver in kernelspace as well. All commands will
simply be forwarded from the userspace nal to the kernelspace nal. Further-
more a locking mechanism for the VNIC is still needed if more than one
process of the application are allowed to use the nic.

4.1.4 Pure software - VDMA handler & CB protocol in userspace

The next better approach will move one of the two existing TX circular
buffer into userspace. Each userspace-side of the nal and therefore each
application would have its own virtual NIC. Short messages may be sent di-
rectly through the TX-CB without any intervention of the OS (OS Bypass).
This saves one context switch from userspace to kernelspace but exposes the
send buffer directly to the application. The application may currupt the
send buffer and, because all control register can only me mapped into the
addressspace as a whole block, it may also currupt the control register of
other application that use a different VNIC. Longer messages that are to
big for one packet but still to short to justify the delay of a VDMA transfer
must be broken into several packets. This approach requires the same kind
of protocol as the last one. The remaining packets may be sent over the
second TX-CB of the same VNIC. That TX-CB may be in userspace or in
kernelspace. A separate thread is needed to implement non-blocking calls.
Special care has to be taken if more than one process are allowed to use the
nic.

The receive buffer can be in userspace or kernelspace but since an in-
terrupt will be raised (and all interrupts run in kernelspace) when a packet
arrives, it’s easier to keep that part of the driver in kernelspace as well.

That solution would be the most promising one. It’s not feasible because
of several reasons:

1. The current Portals implementation doesn’t support OS By-
pass. All function calls are forwarded into kernelspace because Portals
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is a Linux module and modules live in kernelspace exclusively. To move
Portals into userspace would be a project on it’s own. Because more
than one application may use Portals at the same time, something
that coordinates all processes is still needed, therefore Portals must be
split into a userspace library that is shared between all processes (and
therefore requires context-switching).

2. Since some parts still need to be in kernelspace (interrupt handler),
there will might be the need to share some structures between ker-
nelspace and userspace. That’s almost impossible and won’t be a good
concept because userspace code may compromise kernelcode.

4.1.5 Software & VHDL

A hardware solution of the Portals 3 library represents one of the final goals
of the Portals implementation strategy.

The challenge on the software-side is that Portals doesn’t offer any in-
terface to the driver to put the match table to the nic.

The following changes in the firmware would furthermore require that
the DMA limitations of the nic (addresses aligned to 32 bytes, length a
multiple of 8 bytes) have to be removed first.

VHDL only

This solution would not justify the additional work needed to implement it
for VDMA transfers because the page tables of the application space process
has to be parsed to get the logical addresses for the VDMA transfer. The
cpu load for this work is very low (1 interrupt for 1 MB of transferred data
⇒ 800MB/s = 800 interrupts per second). On the other hand the code to
setup and control the transfer is very complicated and therefore difficult to
port on the nic.

A feasible project would be to port the matching of the memory de-
scriptors and the short message protocol to the nic. The complexity of
the firmware thus increases and requires more space on the FPGA. Since
even dynamic memory structures are needed, memory is required and the
memory that’s already on the nic may not be big enough.

CPU

The easier hardware solution would be to bring a cpu on the nic. The FPGA
is to 33% full, there might be enough space to load a cpu core into the FPGA.
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Free CPU cores are available from http://www.opencores.org/. Nowadays
there are even tools that can generate a customized cpu at the push of a
button. The SRAM or the SDRAM might then be used as program and data
memory. That solution offers faster development cycles and seems feasibler
to me.

If someone is really interested in doing that then even a redesign of the
nic might be considered. The FPGA could be replaced with one that has a
cpu core integrated (e.g. XilinX virtex2pro with integrated PowerPC core).

4.2 Conclusion

An approach that changes anything in the firmware will go beyond the scope
of a diploma thesis. Even if all the needed design tools were available, the
success of the project may not be guaranteed because either the FPGA is
too small to hold all the a cpu core or the RAM on the nic might be to small
to hold the data structures.

Thus a pure software solution is the only reasonable approach.
The idea of the whole project is to approach the final goal step by step

while learning the concepts of both systems. Therefore a basic version the
driver will be written and after successfull tests, the driver will be upgraded
until the final version is reached.

1. The first implementation will only use the CB buffer protocol of the
VDMA handler to transfer messages. This step is very important in
order to understand the concept of Portals and to learn how to write
a nal for Portals.

2. The second version will use VDMA handler and send everything over
VDMA.

3. Last but not least a VNIC will be reserved and all the short message
traffic will go over the TX/RX-CB protocol.



Chapter 5

Implementation

5.1 Provisorly solution - VDMA handler CB

The VDMA handler provides two commands to send messages (< 504 bytes)
over its circular buffer. Whenever Portals wants to send a message the mes-
sage is attached to the cb_send_request_queue of the VDMA handler and
the VDMA kernelthread is woken up. Afterwards the VDMA handler ker-
nelthread starts processing its queues and sends the message. These func-
tions are initially intended for debugging of the driver and will be removed
in a later stage. Nevertheless I learned a lot about what it takes to write a
driver for Portals. The most important lesson from this approach was, that
the VDMA handler uses a connection-based communication that contrasts
with the Portals philosophy. Every application that wants to use VDMA
transfers has to send a INIT VDMA command over the ioctl interface
together with a structure that announces all the nodes and all the processes
with which it wants to exchange messages.

5.2 Final solution

The final solution consists of the original Intercept Linux driver that was
extended with additional functionality to support Portals. The driver is
needed to load the firmware into the FPGAs on the nic and to initialize the
nic. The FCI library (a library similar to Portals) just relies on the Linux
driver and can therefore be omitted. Another important point was to leave
as much code from the driver as it was in order to prevent new bugs and
to merge updates easier from the original driver into the Portals driver at a
later date. The hybrid module supports Portals calls and VDMA commands

23
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at the same time.

5.2.1 Architecture

Portals & FCI architecture

Figure 5.1 compares the Myrinet driver against the Intercept FCI driver.
All calls into Portals from the application are made into the userspace API
side of Portals. Every function call is forwarded to the userspace side of
the Myrinet NAL. The NAL uses the module “p3mod” to pass the bar-
rier to kernelspace where the Portals module resides. The Portals module
eventually jumps into the kernelspace side of the NAL to send and receive
messages.

Application
(MPI library)

Libmyrnal forward PTL_IFACE_MYR
Libptlapi forward calls to NAL

P3mod Portals 3
portals

RMPP
rtscts
Lib_myrnal

Firmware (Myrinet)
rtsmcp

Network abstraction layer (NAL)

Application
(MPI library)

FCI library

FCI
OS bypass Device Driver &

VDMA handler

Intercept NIC

Portals 3.2 myrinet driver architecture SCS FCI architecture

Userspace

Kernelspace

Figure 5.1: Comparing the myrinet driver and the FCI driver.

Portals Intercept driver architecture

The final architecture is shown in picture 5.2. The original driver part will be
used to initialize the nic and to send long messages over the VDMA handler.
It will be extended with functions to send short messages over another VNIC.
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Application
(MPI library)

Libmyrnal forward PTL_IFACE_MYR
Libptlapi forward calls to NAL

P3mod Portals 3
portals RMPP

Intercept NIC

Network abstraction layer (NAL)

Userspace

Kernelspace

Lib_inal

Device driver &
VDMA handler

Figure 5.2: The Portals Intercept driver architecture.

5.2.2 VDMA

Removal of transfer limitations

The first change made to the VDMA handler was to introduce new control
messages and to add intermediate buffer to get the ability to transfer a mes-
sage of any size and any alignement (see 2.2.2). The VDMA GET message
was extended with the following fields:

typedef struct get msg{
. . .

I cpt UInt64 key remaining ;
Icpt UInt64 f i r s t b l o c k l e n g t h ;
Icpt UInt64 f i r s t b l o c k a dd r ;
Icpt UInt64 l a s t b l o c k l e n g t h ;
Icpt UInt64 l a s t b l o c k add r ;

. . .
} get msg t ;

Whenever a VDMA transfer request doesn’t meet the hardware require-
ments the address and the length of the buffer are ajusted to meet them and
a structure of the type portals_wait_get_ext_reply_t is allocated and at-
tached to the queue get_ext_reply_queue. This struct holds informations
that will be needed to store the remaining bytes and to identify the messages
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that will contain them. The first/last block fields contain the address and
the number of bytes that are needed to be transferred. The GET message for
the first slice will hold the additional information. The peer VDMA han-
dler will analyze that message and send a VDMA_PORTALS_GET_EXT_REPLY
message back, containing the remaining data.

Figure 5.3 illustrates how the transfer gets ajusted when the sender and
the receiver have the same missalignement.

first bytes

last bytes

two aligned blocks

transfer

sender receiver

Figure 5.3: Unaligned blocks; sender and receiver have the same displace-
ment.

If the sender and the receiver have different missalignements then a mem-
ory copy at the sender’s side is needed. To accomplish this task some tem-
porary buffers have been added to the VDMA handler that contain the
temporary 1 MB blocks. This procedure is shown in figure 5.4.

Pseudo-connectionless VDMA transfers

As mentioned in 5.1 the VDMA handler uses a connection-based protocol.
The proper solution to change this into a connection-less protocol would
have been to reimplement this part wherever necessary. But this would
have needed major changes that I didn’t have the time for. Furthermore
existing applications that are based on the old protocol would’t run any-
more. Therefore the old behavior was kept but a new control message
VDMA PORTALS UPD CONN has been added. If a process wants
to send a message to a remote process that wasn’t in mentioned when the
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transfer

intermediate buffer receiversender

first bytes

last bytes

Figure 5.4: Unaligned blocks; sender and receiver have a different displace-
ment.

INIT VDMA was executed then it uses the new control message to have
the remote VDMA handler updated its connection table and updates its
own connection table.

A driver that’ll be used for productive usage will therefore need some
changes concerning this point.

No self connect

Every process participating in future VDMA transfers must be listened in the
structure passed with the INIT VDMA command. The VDMA handler
expects that there’s a switch beetween its nic and any other nic. It connects
to every nic listed in that structure. Since the processes of the application
that runs under that particular node are listened as well, it tries to connect
to itself over the network.

If only two nics without any switch in between are present then the
following happends at startup: The VDMA handler tries to connect to the
first node in the list. Let’s say that’s itself. It sends the message intended for
itself, but since there’s no software or hardware loopback, the remote VDMA
handler gets that message. It accepts the connection and sends an initial
credit update back. Hereafter the first VDMA handler tries to connect to the
second node in the list (see vcomm_connect()). Let’s say that’s the other
nic. The other nic will refuse the connection because it thinks it’s already
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connected. . .
The VDMA handler code was changed to prevent that this scenario will

happen.

Integration into Portals

Whenever a message has to be sent over the network, Portals passes a
ptl_hdr_t structure to the driver and expects the driver to prepend that
header to the message. The driver transferrs the Portals header in a new
control message VDMA_PORTALS_TRY_MATCH over the CB protocol to the peer
VDMA handler. The receiver passes that header to Portals and that lets
the driver know how many bytes of the message it wants and where it
should put the message (matching receive). Therefore only the receiver
knows the details of the transfer. There are two kinds of VDMA trans-
fers: read and write. This distinction is made in software, it simulates the
write command, the hardware knows only one kind of VDMA transfers (see
2.2.2). The receiver causes the VDMA handler to read the message via
VDMA GET commands. After successfull completion of the transfer a
VDMA_PORTALS_MATCH_REPLY message is sent back to the sender such that
it can inform Portals that generates the appropriate PTL_EVENT_..._END.
Figure 5.5 illustrates the dataflow for long messages.

RTS + Portals header

Match

CTS
VDMA transfer

Set up page table

MSGEND

No Match
MSGEND

Lib_finalize()

Lib_finalize()

Match?

Set up page table

Lib_finalize()

Lib_finalize()

Sender Receiver

Figure 5.5: Dataflow for long messages over VDMA transfer.

The Portals node id is transposed 1:1 into the Intercept Unicast
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Address (IUCA). The systemwide unique physical rank used by the
VDMA handler is composed from the Portals process id and the node
id number.

5.2.3 CB protocol

This section explains the implementation for the short message protocol.

VNIC

To be able to send messages over the CB protocol a virtual NIC is reserved
upon startup of the driver. The receive buffer (RX-CB) and one send (TX-
CB) buffer are assigned to the Portals Intercept driver kernelthread. Only
the send function though which Portals jumps into the driver has access to
the second send buffer.

Kernelthread

A kernelthread is launched for every application that uses the driver (more
precisely: for every application process, if more than one processes are al-
lowed to send messages). This kernelthread has the advantage that the pro-
cessing of the arriving packets doesn’t have to be done in interrupt. Even
polling of the device is easily possible this way (see 6.1.2).

RMPP

Rolf Riesen [14] proposes a new protocol specially designed for high-performance
computing. This protocol meets the demands of Portals and the Intercept
nic:

• It’s connectionless: the needed structures to support connections are
allocated dynamically.

• It supports ordered delivery of messages: since a message is sent
over all four planes the order of messages that the receiver sees may
differ from the order in which they were sent. Even individual packets
may get shuffled (see 3.3.3 and 2.1.3).

• A flow control to prevent flooding of the receiver is present as well.

The choosen implementation slightly differs from the original one that
Rolf made for the Myrinet network. The protocol doesn’t have to provide a
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Type Description
RTS <data> Request to send a message
CTS [n] Clear to send n data packets & hint how many bytes Portals

wants from that message
NEXT_CTS [n] Clear to send n data packets
DATA [s] Data packet with sequence number s
STOP_DATA Data packet, last of granted block
LAST_DATA Data packet, last of message
MSGEND Message successfully received, or no more data wanted, finish
MSGERROR An error happend, abort transmission with error message

Table 5.1: Packet types for a simplified RMPP.

reliability layer because the hardware does all the necessary retransmission
and therefore each sended packet will eventually arrive at its destination.

Table 5.1 gives an overview of the different packet types.
The message header consists of only the necessary fields:

typedef struct{
pkthdr type t type ;
unsigned long long msgNum;
s i z e t l en ;

} pkthdr t ;

The msgNum identifier is needed to guarantee the order of the messages.
If a the message number is higher than expected, the whole message is copied
to the queue reordered_messages_queue and lib_parse() (see 5.3.2 for
explanation) will be called later, when the message before that has received.

A data packets contains only the number of the packet:

typedef struct{
unsigned int number ; /∗ Data packe t [ number ] . (0−n ) ∗/

} pkthdr data t ;

The receiver calculates the offset in the application via the packet num-
ber, therefore it doesn’t matter in which order the data packets arrive.

The CTS message contains a clearance to send n packets and as a hint
the total amount of bytes the memory descriptor can hold. It’s the first CTS
the receiver gets.

typedef struct{
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unsigned int n ; /∗ Clear to send n data packe t s . ∗/
s i z e t mlen ; /∗ Send reque s t ed l en g t h back , because t h i s i s more e f f i c i e n t . ∗/

} pk t c t s t ;

NEXT_CTS message is sent if the sender needs an other CTS. It consists
of the number of granted packets only.

typedef struct{
unsigned int n ; /∗ Clear to send n data packe t s . ∗/

} pk t n ex t c t s t ;

In order to send a message the sender transmitts a ready to send
(RTS) together with the Portals header ptl_hdr_t and the first bytes of
the message over the nic. This message is sent over the first TX-CB that is
only used for that purpose (no lock latency). The receiver sends a clear to
send (CTS) together with the number of packets its willing to accept back.
This is done by the kernelthread and over the second TX-CB. In the current
implementation this number is set to 16 packets. In a further version this
number should be proportional to the free space in the RX-CB and the
number of nodes that want to sent messages to that node. Considering the
fact that each packet holds up to ≈500 bytes of data, ≈8000 bytes may be
sent with one CTS. The threshold when the driver switches from the short
message protocol to the long message protocol is set to exactly that message
length. The sender sents as many data packets as it was allowd to sent
back. The last message is ot type STOP_DATA, if there are more packets (and
it needs another CTS) or LAST_DATA, if the message was completely sent.
When the message is completely arrived at the other side, a MSGEND message
is sent back.

An overview of the whole architecture is given in figure 5.7, figure 5.6
illustrates the dataflow.

5.2.4 Portals P3mod

The module P3mod that provides user level access to kernel network ab-
straction layers (NAL) was not SMP capable. I modified the cb table-
functions and the register functions to use spinlocks and rwlocks. It should
now be able to cope with several applications and several NALs at the same
time.

5.2.5 Current implementation

The current driver version supports only one application.
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Figure 5.6: Dataflow for short messages over the CB protocol.

5.3 Code extracts

This section explains the interface function of the Portals Intercept driver.
It may serve to understand the driver better and give an impression what’s
needed to write a NAL (there’s no document of a newer data on that topic).

5.3.1 API-side NAL

The three main functionalities in inal.c are open & close and forward,
which is used for all transactions out of the user mode.

First all the current and future pages are locked against swapping out.
This is crucial for the correct operation of the driver. The cb_write function
is supposed to copy data from userspace to kernelspace, however sometimes
it’s called in interrupt. If some pages are not valid it’s not possible to page
them in under a non-preemtible kernel (< 2.5), because page faulting is not
allowed.

P3DEV addresses the P3mod module that forwards the calls from userspace
to kernelspace. It’s located under /dev/portals3. The P3REGISTER instruc-
tion is used to register the NAL with Portals.

Afterwards the initialization of the lib-side driver begins. The IUCA
and the allowed planes are set through the ioctl -commands SET_IUCA and



5.3. CODE EXTRACTS 33

Application process / sender

RX-CB TX-CB

Kernelthread

TX-CB

Direct send
VNIC

Linux driver

Application process / receiver

TX-CB RX-CB

Kernelthread

TX-CB

Direct send
VNIC

Linux driver

1) RTS2) CTS /
NEXT_CTS

3) DATA /
LAST_DATA /
STOP_DATA

4) MSGEND

Message

Figure 5.7: Architecture short messages over the CB protocol.
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SET_PLANE_MASK.
Hence the process is registered with the VDMA handler by using the

INIT_VDMA_NOSELFCONNECT ioctl command.

na l t ∗PTL IFACE INAL( int i n t e r f a c e i nd ex ,
p t l p i d t pid ,
p t l n i l i m i t s t ∗ des i r ed ,
p t l n i l i m i t s t ∗ actua l ,
int ∗ rc )

{
. . .
i f ( mlocka l l (MCL CURRENT | MCL FUTURE) != 0 )
{

. . .
}
. . .
i f ( ( p3fd = open (P3DEV, ORDWR)) < 0) {

. . .
}
. . .
r c i n t = i o c t l ( p3fd , P3REGISTER, & mforward ) ;
. . .
i na l Pt lGe t Id ( i n a l n i h and l e , & id ) ;
prank = PORTALS ID TO ICPT PRANK( id ) ;
. . .
i f ( ( physfd = open (PATH ”/ ” ICPT FILENAME EXT PHYS NIC , ORDWR))<0){

. . .
}

/∗ Set IUCA fo r our NICS ∗/
command = SET IUCA;
iuca = id . nid ;
i f ( i o c t l ( physfd , command, & iuca ) ){

. . .
}

command = SET PLANE MASK;
plane mask = 1 | 2 | 8 ; /∗ p lane 2 ( 4 ) i s fucked up ! ∗/
i f ( i o c t l ( physfd , command, & plane mask ) ){

. . .
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}

i f ( ( vdmafd = open (PATH ”/ ” ICPT FILENAME EXT VDMA, ORDWR))<0){
. . .

}

/∗ I n i t i a l i z e the i n i t r e q s t r u c t u r e ∗/
i n i t r e q . p roce s s count = 1 ;
i n i t r e q . p r o c e s s e s = mal loc ( i n i t r e q . p roce s s count ∗ s izeof (∗ i n i t r e q . p r o c e s s e s ) ) ;
i n i t r e q . p r o c e s s e s [ 0 ] = prank ; /∗ only one process ∗/
i n i t r e q . n i c count = 1;
i n i t r e q . n i c s = mal loc ( i n i t r e q . n i c count ∗ s izeof (∗ i n i t r e q . n i c s ) ) ;
i n i t r e q . n i c s [ 0 ] = 0;
i n i t r e q . comm table = mal loc ( i n i t r e q . n i c count ∗ i n i t r e q . p roce s s count ∗

s izeof (∗ i n i t r e q . comm table ) ) ;
i n i t r e q . comm table [ 0 ] = id . nid ; /∗ IUCA = Por ta l s nid ∗/
i n i t r e q . c a l l e r v r a nk = 0 ; /∗ index in t a b l e above ∗/

i f ( i o c t l ( vdmafd , INIT VDMA NOSELFCONNECT, & i n i t r e q ) ){
. . .

}
. . .
return & in a l ;

}

Data is transfered across the protection domain by forward, which after
packing all arguments in mforward calls ioctl of P3mod which handles the
message to the Portals library.

stat ic int forward ( na l t ∗ nal ,
int id ,
void ∗ args ,
s i z e t a rg s l en ,
void ∗ ret ,
s i z e t r e t l e n )

{
s s i z e t rc ;
int p3fd ;
i n a l f o rwa rd t mforward ;
. . .
/∗ Pack arguments ∗/
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mforward . args = args ;
mforward . a r g s l e n = a r g s l e n ;
mforward . r e t = r e t ;
mforward . r e t l e n = r e t l e n ;
mforward . p3cmd = id ;
rc = i o c t l ( p3fd , P3CMD, ( unsigned long ) (& mforward ) ) ;
. . .

}

Before the device can be closed, the Portals library has to be closed first.
Both instructions are called in the shutdown function.

stat ic int shutdown ( na l t ∗ nal , int i n t e r f a c e )
{

. . .
c l o s e ( p3fd ) ;
. . .
c l o s e ( vdmafd ) ;
. . .

}

5.3.2 LIB-side NAL

This section explains briefly the lib side of the NAL. Only the direct interface
to Portals is described, the actual send and receive functions that access the
hardware directly won’t be discussed here.

Several debug macros are used in the driver, each has a debug level
indicator as the first parameter, it’s inserted or omitted in the module,
depending on the actual debug level used to compile the code:

• The ICPT_FCT_ENTRY and ICPT_FCT_EXIT / ICPT_FCT_RETURN macros
print a log output depending on the loglevel, whenever a the execution
of a function begins or ends.

• ICPT_LOG prints a debug message, depending on the loglevel.

• ICPT_ERROR prints an error message.

After a Linux driver is loaded the function marked with __init is called.
The function inal_module_init() is actually called from the __init func-
tion of the Intercept driver because everything is compiled into one module.
The init function registers the Intercept NAL with Portals and makes it
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available for used. When the Intercept module is started via the insmod
command, an optional parameter IcptDrv_ptls_nid sets the node number
of the current machine. After the userspace api has sent the P3REGISTER
ioctl command (see 5.3.1) to P3mod the inal_destroy_nal callbacks is
called to startup the kernelspace part of the NAL. When the p3 filedescrip-
tor is released during shutdown of the userspace NAL (e.g. close()) the
inal_destroy_nal callback is called, that unregisters the driver.

int i n i t i n a l modu l e i n i t (void )
{

ICPT FCT ENTRY(LOG MED, ”” ) ;

/∗ Reg i s t e r wi th the P3 module ∗/
p t l s d e v i d = p3 r e g i s t e r d ev ( ” In t e r c ep t Por ta l s NAL” ,

I cptDrv pt l s n id ,
i n a l c r e a t e n a l ,
i n a l d e s t r o y n a l ) ;
. . .

ICPT FCT RETURN(0 , LOG MED, ”” ) ;
}

void e x i t i na l modu l e ex i t (void )
{

ICPT FCT ENTRY(LOG MED, ”” ) ;

/∗ Te l l the Por ta l s 3 . 0 module , t h a t we ’ re out ∗/
p3unreg i s t e r dev ( p t l s d e v i d ) ;
. . .
ICPT FCT EXIT(LOG MED, ”” ) ;

}
The most important parts of the inal_create_nal subroutine is that

an object of the type nal_cb_t is allocated that holds a jump table that is
used by Portals to communicate with the driver.

na l cb t ∗ i n a l c r e a t e n a l ( p t l n i l i m i t s t ∗ des i r ed ,
p t l n i l i m i t s t ∗ ac tua l )

{
int rc ;
na l cb t ∗ nal ;

ICPT FCT ENTRY(LOG MED, ”” ) ;
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/∗ We have to a l l o c a t e the na l s t r u c t u r e dynamical ly , because t h i s
s t r u c t u r e conta ins in format ions about the userspace proces s .
Otherwise on ly one process at a time would be a b l e to use t h i s
na l . ∗/

/∗ a l l o c a t e memory f o r na l ∗/
nal = ( na l cb t ∗ ) kmalloc ( s izeof ( na l cb t ) , GFP KERNEL) ;
. . .

/∗ a l l o c a t e memory f o r na l p r i v a t e data ∗/
nal−>na l data = (void ∗ ) kmalloc ( s izeof ( i n a l d a t a t ) , GFP KERNEL) ;
. . .

/∗ f i l l in na l f unc t i on po in t e r s ∗/
nal−>cb send = ina l s end ;
nal−>cb recv = i n a l r e c v ;
nal−>cb wr i t e = i n a l w r i t e ;
nal−>cb mal loc = ina l ma l l o c ;
nal−>c b f r e e = i n a l f r e e ;
nal−>cb i nva l i d a t e = i n a l i n v a l i d a t e ;
nal−>cb va l i d a t e = i n a l v a l i d a t e ;
nal−>c b p r i n t f = i n a l p r i n t f ;
nal−>c b c l i = i n a l c l i ;
nal−>c b s t i = i n a l s t i ;
nal−>cb d i s t = NULL;
. . .

/∗ i n i t i a l i z e p o r t a l s data s t r u c t u r e s ∗/
rc = l i b i n i t ( nal , I cp tDrv pt l s n id , 0 , current−>uid , a c tua l ) ;
. . .

ICPT FCT RETURN( nal , LOG MED, ”” ) ;
}

The inal_send function checks if the userspace address is valid and calls
the actual send function p3_send.

stat ic int i n a l s end ( na l cb t ∗ nal ,
void ∗ pr ivate ,
l i b msg t ∗ cookie ,
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p t l hd r t ∗ hdr ,
p t l n i d t dnid ,
p t l p i d t p id in ,
unsigned int niov ,
l i b md iov t ∗ iov ,
s i z e t l en )

{
us e r p t r data ;

ICPT FCT ENTRY(LOG MED, ”” ) ;

i f ( niov == 1) {
i f ( l en != iov [ 0 ] . mdiov len )

ICPT FCT RETURN(PTL INV MD, LOG MED, ”” ) ;

data = iov [ 0 ] . mdiov base ;

i f ( a c c e s s ok (VERIFY READ, data , l en ) == 0) {
ICPT ERROR( ”buf %p , l en %d no read ac c e s s !\n” ,

data , ( int ) l en ) ;
ICPT FCT RETURN(PTL INV MD, LOG MED, ”” ) ;

}
}
else i f ( niov == 0) {

data = NULL;
l en = 0 ;

}
else {

ICPT FCT RETURN(PTL INV MD, LOG MED, ”” ) ;
}

ICPT FCT RETURN( p3 send ( nal , pr ivate , data , len , dnid , hdr , cook i e ) , LOG MED, ”” ) ;
}

This function decides wheter a message is sent over the short message
protocol or the long message protocol.

stat ic int p3 send ( na l cb t ∗ nal ,
void ∗ pr ivate ,
void ∗ buf ,
s i z e t len ,
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int dst n id ,
p t l hd r t ∗ hdr ,
l i b msg t ∗ cook i e )

{
ICPT FCT ENTRY(LOG MED, ”” ) ;
. . .

/∗ Threshold f o r VDMA one CTS and maximum data by t e s . ∗/
i f ( l en <= RTSCTS DATA PACKET LEN + MAX DATA PKTS ∗ RTSCTS NEXT DATA PACKET LEN )
{

ICPT FCT RETURN( send short msg ( nal , pr ivate , buf , len , dst n id , hdr , cook i e ) ,
LOG MED, ”” ) ;

}
else
{

ICPT FCT RETURN( send long msg ( nal , pr ivate , buf , len , dst n id , hdr , cook i e ) ,
LOG MED, ”” ) ;

}
}

The following function sends a message over the short message protocol.
First an object is allocated and passed to the kernelthread afterwards such
that it’ll be able to recognize the incoming CTS. The sending of a RTS may
be blocked temporarly because the driver is waiting for a CTS that confirms
implicitly that the message number is resetted. Hence the RTS is sent or
postponed if there’s not enough space in the TX-CB. If anytime an error
occurs then lib_finalize() is called to notify Portals upon unsuccessfull
completion of the message transfer.

int send short msg ( na l cb t ∗ nal ,
void ∗ pr ivate ,
void ∗ buf ,
s i z e t len ,
int dst n id ,
p t l hd r t ∗ hdr ,
l i b msg t ∗ cook i e )

{
int r e t v a l ;
r t s s e n t t ∗ r t s s e n t ;
icpt IUCA t IUCA = ( icpt IUCA t ) ds t n id ;



5.3. CODE EXTRACTS 41

ICPT FCT ENTRY(LOG MED, ”” ) ;

i f ( ( r t s s e n t = ( r t s s e n t t ∗)
kmalloc ( s izeof ( r t s s e n t t ) , GFP KERNEL) )
== NULL)

{
. . .
l i b f i n a l i z e ( nal , pr ivate , cookie , −ENOMEM) ;
. . .
ICPT FCT RETURN(−ENOMEM, LOG MED, ”” ) ;

}

. . .

/∗ Sending o f RTS messages may temporar ly be b l o cked because we are wa i t ing u n t i l
t he remote machine r e c e i v e s the BOOTMSG to i n i t i a l i z e the message counter . ∗/

i f ( ! send msg al lowed [ IUCA ] )
{

r t s c t s pos tponed msg t ∗ postponed msg ;

i f ( ( postponed msg = ( r t s c t s pos tponed msg t ∗)
kmalloc ( s izeof ( r t s c t s pos tponed msg t ) , GFP KERNEL) )
== NULL)

{
ICPT ERROR( ”Could not a l l o c a t e memory f o r postponing message r eque s t !\n” ) ;

k f r e e ( r t s s e n t ) ;
l i b f i n a l i z e ( nal , pr ivate , cookie , −ENOMEM) ;

ICPT FCT RETURN(−ENOMEM, LOG MED, ”” ) ;
}

ICPT LOG(LOG HIGH, LOG AREA PORTALS,
”Cannot send RTS because I ’m s t i l l wa i t ing f o r the cor re spond ing CTS.\n”
”Message has been postponed .\n”
) ;

. . .
send msgNum [IUCA]++;
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ICPT FCT RETURN(0 , LOG MED, ”” ) ;
}

/∗ Send packe t . ∗/
i f ( ( r e t v a l = r t s c t s s e n d r t s (&txcb proces s , r t s s en t , len , hdr ) )

< 0 )
{

i f ( r e t v a l != −ENOBUFS)
{

ICPT ERROR( ”Could not send message to peer .\n”
”( r t s c t s s e nd () returned %d ) . \ n” ,
r e t v a l ) ;

k f r e e ( r t s s e n t ) ;

ICPT FCT RETURN( re tva l , LOG MED, ”” ) ;
}
else
{

/∗ I f t h e r e i s no space in the TX CB,
the message w i l l be sen t l a t e r . ∗/
r t s c t s pos tponed msg t ∗ postponed msg ;

ICPT LOG(LOG HIGH, LOG AREA PORTALS,
”Cannot send RTS because I don ’ t have enough f r e e space \n”
”in the TX c i r c u l a r bu f f e r .\n”
”Message has been postponed .\n”
) ;

i f ( ( postponed msg = ( r t s c t s pos tponed msg t ∗)
kmalloc ( s izeof ( r t s c t s pos tponed msg t ) , GFP KERNEL) )
== NULL)

{
ICPT ERROR( ”Could not a l l o c a t e memory f o r postponing message r eque s t !\n” ) ;

k f r e e ( r t s s e n t ) ;
l i b f i n a l i z e ( nal , pr ivate , cookie , −ENOMEM) ;

ICPT FCT RETURN(−ENOMEM, LOG MED, ”” ) ;
}
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. . .
send msgNum [IUCA]++;

ICPT FCT RETURN(0 , LOG MED, ”” ) ;
}

}
ICPT FCT RETURN(0 , LOG MED, ”” ) ;

}

The send_long_msg() function passes a long message to the VDMA
handler. It checks first if a connection to the remote node already exists
and establishes one if that isn’t the case. vcomm_connect() is used to con-
nect to the remote node, afterwards a send_portals_upd_conn() sends a
request to update the connection table of the remote process. When this is
done send_portals_try_match_msg() transmits the Portals header to the
remote driver that’ll get the message with a VDMA read transfer.

int send long msg ( na l cb t ∗ nal ,
void ∗ pr ivate ,
void ∗ buf ,
s i z e t len ,
int dst n id ,
p t l hd r t ∗ hdr ,
l i b msg t ∗ cook i e )

{
. . .
ICPT FCT ENTRY(LOG MED, ”” ) ;
. . .

l o c a l p r ank = PORTALS HEADER SRC TO ICPT PRANK(∗ hdr ) ;
remote p rank = PORTALS HEADER DEST TO ICPT PRANK(∗ hdr ) ;

l o c a l c l t = ge t c l t by prank ( l o c a l p r ank ) ;
. . .

while ( down in t e r rupt ib l e (& l o c a l c l t −>connect ion sem ) )
{

. . .
}
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/∗ Check i f we can f i nd the remote prank in the prank t a b l e ∗/
/∗ to see communication with the remote i s s e t up ∗/
for ( i =0 , bConnected=FALSE ; i<l o c a l c l t −>proce s s count ; i++)
{

i f ( l o c a l c l t −>phys i c a l r ank s [ i ] == remote p rank )
{

bConnected = TRUE;
break ;

}
}

i f ( bConnected )
{

. . .
}
else
{

/∗ connect . . . ∗/
. . .

/∗ Now send the new informat ion to the peer VDMA hand ler . ∗/
/∗ We have to send the IUCA of every s i n g l e NIC . ∗/
/∗ Current ly on ly one NIC i s supported . ∗/

r e t v a l = send porta l s upd conn ( l o c a l c l t , remote p rank ) ;
i f ( r e t v a l == 0 )
{

. . .
}
else
{

ICPT ERROR( ”Could not send PORTALS UPDATE CONNECTION\n”
”message to remote VDMA handler !\n” ) ;

l i b f i n a l i z e ( nal , pr ivate , cookie , r e t v a l ) ;

ICPT FCT RETURN( re tva l , LOG MED, ”” ) ;
}

}

i f ( l o c a l c l t −>task != current )
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{
ICPT ERROR( ”Current p roce s s (PID: %d) has task s t r u c tu r e at %p , whi l e ”

” the proce s s r e g i s t e r e d as VDMA c l i e n t on t h i s f i l e ”
” handle has task s t r u c tu r e at %p\n” ,
current−>pid , current , l o c a l c l t ? l o c a l c l t −>task : NULL) ;

ICPT FCT RETURN(−EACCES, LOG MED, ”” ) ;
}

/∗ Connection to peer VDMA hand ler e s t a b l i s h e d ∗/
/∗ and comm table e t c conta ins remote p roce s s e s ∗/

/∗ Send a Por ta l s Try Match message ∗/
/∗ a f t e r the VDMA t r an s f e r i s processed or ∗/
/∗ i f t he peer VMDA hand ler sends a non−match ∗/
/∗ message back , we use to queue to c a l l l i b f i n a l i z e ∗/
/∗ to n o t i f y Por ta l s upon complet ion ∗/
r e t v a l = send porta l s t ry match msg ( hdr , nal , pr ivate ,

cookie , l o c a l c l t , remote p rank , buf ) ;
i f ( r e t v a l != 0 )
{

ICPT ERROR( ”Could not send Por ta l s Try Match message !\n”
” − vcomm send () returned %d\n” , r e t v a l ) ;

l i b f i n a l i z e ( nal , pr ivate , cookie , r e t v a l ) ;

ICPT FCT RETURN( re tva l , LOG MED, ”” ) ;
}

/∗ the vdma hand ler w i l l f r e e the r e que s t d e s c r i p t o r , once i t has ∗/
/∗ handled the r e que s t ∗/

ICPT FCT RETURN(INAL OK, LOG MED, ”” ) ;
}

The following lines give a short overview of the kernelthread implemen-
tation. First it looks in the RX-CB if any new messages have arrived. If a
RTS arrives then the msgNum field is checked to see if a message with this
number is expected. If the number is too high then the RTS is copied into
a reorder queue. If it’s exactly the expected number, then lib_parse()
is called that sends the PTL_EVENT_..._START event to the application. It
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furthermore analyzes the passed ptl_hdr_t object and looks for a matching
memory descriptor. Regardless if it finds one or not it’ll jump back into the
driver through the function recv_short_msg().

If a data packet arrived then it’s copied into the application. If it’s the
last packet then lib_finalize() is called, that generates the PTL_EVENT_..._END
event.

It’s worth mentioning that the common copy_to/from_user() func-
tions, that copy memory between kernelspace and userspace, can’t be used
at this place. These functions are indended for ioctl calls, when the task con-
text is still the userspace process. Since we have our own thread context (ker-
nelthread) an other approach must be gone. The function memcpytouser()
takes as an additional argument pointer struct task_struct* task that
specifies the application process. That function is the reason, why all pages
have to be locked before any transfer can happen (see 5.3.1).

If the RTSCTS_POLL variable is defined then the kernelthread starts polling
the nic. That might result in shorter respond time (see 6.1.2).

for ( ; ; )
{
#ifndef RTSCTS POLL

s e t c u r r e n t s t a t e (TASK INTERRUPTIBLE) ;
#endif

/∗#############################∗/
/∗ Perform the Por ta l s work ∗/
/∗#############################∗/

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
/∗ Process the next packe t from the RX CB ( i f a v a i l a b l e ) ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
while ( r t s c t s r e ad n e x t ( recv msg buf f e r , & recv IUCA) >= 0)
{

pkthdr t ∗ hdr = ( pkthdr t ∗) r e cv msg bu f f e r ;
. . .

switch ( hdr−>type )
{
case RTS: {

p t l hd r t ∗ phdr = ( p t l hd r t ∗ ) ( r e cv msg bu f f e r + s izeof ( pkthdr t ) ) ;
na l cb t ∗ nal ;
struct t a s k s t r u c t ∗ task ;
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i n a l p r i v a t e t p r i va t e ;
struct l i s t h e a d ∗ tmp ;
r e o r d e r e d r t s t ∗ r e o r d e r e d r t s ;

/∗ Only i f we r e c e i v ed a RTS check the message number . ∗/
i f ( hdr−>msgNum == BOOTMSGNUM )
{

. . .
lastMsgNum [ recv IUCA ] = hdr−>msgNum;

}
else
{

/∗ Did we expec t t h i s message number ? ∗/

i f ( hdr−>msgNum != lastMsgNum [ recv IUCA ] + 1)
{

r e o r d e r e d r t s t ∗ r e o r d e r e d r t s ;

/∗ No , don ’ t c a l l l i b p a r s e ( ) , s ince we have to guarantee
in−order−beg inn ing . ∗/

ICPT LOG(LOG MED, LOG AREA PORTALS,
”Received message number: %Lu\n”
”Expected message number: %Lu\n”
”( Message w i l l be proce s s ed l a t e r . ) \ n” ,
hdr−>msgNum,
lastMsgNum [ recv IUCA ]
) ;

i f ( hdr−>msgNum < lastMsgNum [ recv IUCA ] )
{

/∗ Message number to low ( expec t i n g
ascending numbers ! ) ∗/
. . .

}
else
{

/∗ Add RTS to the reorder queue . ∗/
. . .

}
goto reordered msg ;
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}
else
{

lastMsgNum [ recv IUCA ] = hdr−>msgNum;
}

}
nal = get cb ( cb tb l , phdr−>dest p id , & task ) ;
i f ( na l == NULL)
{

ICPT ERROR( ”nid %Lx pid %x , has no NAL CB\n” ,
phdr−>dest n id ,
phdr−>de s t p id ) ;
. . .

}
else
{

. . .
l i b p a r s e ( nal , phdr , & pr i va t e ) ;

}
/∗ Process reordered messages . . . ∗/
. . .

}
reordered msg :

break ;
. . .
break ;

case CTS:
. . .

break ;

case NEXT CTS:
break ;

case DATA:
case STOP DATA:
case LAST DATA:

i f ( ! l i s t empty (&( th i s p o r t a l s h and l e r−>c t s s ent mes sage s queue ) ) )
{
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. . .
memcpytouser ( c t s s en t−>task ,

dst ,
r e cv msg bu f f e r +
s izeof ( pkthdr t ) + s izeof ( pkthdr data t ) ,
l en ) ;
. . .

/∗ Got f u l l data packe t ? (LAST DATA)
−> send MSGEND back . ∗/

i f ( c t s s en t−>r e cv l en >= ct s s en t−>mlen )
{

. . .

/∗ Use the same msg number t ha t we r e c e i v ed !
(Remote thread i d e n t i f i e s msg by t h i s ) ∗/

i f ( ( r e t v a l = rtsc t s send msgend(&txcb kthread ,
recv IUCA ,
hdr−>msgNum))

< 0)
{

i f ( r e t v a l != −ENOBUFS)
{

ICPT ERROR( ”Could not send message to peer .\n”
”( r t s c t s s e nd () returned %d ) . \ n” ,
r e t v a l ) ;

l i b f i n a l i z e ( c t s s en t−>nal ,
c t s s en t−>pr ivate ,
c t s s en t−>cookie ,
r e t v a l ) ;

l i s t d e l (&c t s s en t−> l i s t l i n k ) ;
k f r e e ( c t s s e n t ) ;

}
else
{

/∗ I f t h e r e i s no space in the TX CB,
the message w i l l be sen t l a t e r . ∗/
. . .

}
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}
else
{

l i b f i n a l i z e ( c t s s en t−>nal ,
c t s s en t−>pr ivate ,
c t s s en t−>cookie ,
0 ) ;

l i s t d e l (&c t s s en t−> l i s t l i n k ) ;
k f r e e ( c t s s e n t ) ;

}
}
else i f ( hdr−>type == STOP DATA )
{

/∗ We need to send the next CTS. ∗/
unsigned int r e t v a l ;

ICPT LOG(LOG MED, LOG AREA PORTALS,
”Sending NEXT CTS . . . \ n” ) ;

/∗ Use the same msg number t ha t we r e c e i v ed !
(Remote thread i d e n t i f i e s msg by t h i s ) ∗/

i f ( ( r e t v a l = r t s c t s s e nd n e x t c t s (&txcb kthread , c t s s e n t ) )
< 0 )

{
i f ( r e t v a l != −ENOBUFS) c a l l
{

ICPT ERROR( ”Could not send message to peer .\n”
”( r t s c t s s e nd () returned %d ) . \ n” ,
r e t v a l ) ;

l i b f i n a l i z e ( c t s s en t−>nal ,
c t s s en t−>pr ivate ,
c t s s en t−>cookie ,
r e t v a l ) ;

l i s t d e l (&c t s s en t−> l i s t l i n k ) ;
k f r e e ( c t s s e n t ) ;

}
else
{

/∗ I f t h e r e i s no space in the TX CB,
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the message w i l l be sen t l a t e r . ∗/
. . .

}
}
else
{

. . .
}

}
goto data found ;

}
}

}
ICPT ERROR( ”Received unexpected DATA message !\n”

”Sender IUCA: %d\n”
”msgNum: %Lu\n” ,
recv IUCA ,
hdr−>msgNum
) ;

data found :
break ;

case MSGEND:
break ;

default :
ICPT ERROR( ”Bu l l s h i t ! Received un i d e n t i f i a b l e message type !\n” ) ;
break ;

}
#ifndef RTSCTS POLL

/∗ Notice t ha t we did some work . . . ∗/
s e t c u r r e n t s t a t e (TASK RUNNING) ;

#endif
}

/∗ Send packe t s i f we have any to send . ∗/

/∗ Send postponed packe t s f i r s t . ∗/
{

. . .
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}

/∗ Send data packe t s i f we have any to send . ∗/
{

. . .
}

ICPT LOG(LOG LOW, LOG AREA PORTALS,
”Kernel thread %s − one i t e r a t i o n done .\n” ,
current−>comm) ;

#ifde f RTSCTS POLL
/∗ Try to not monopolize the PCI−X bus . ∗/
udelay ( 1 ) ;

#else
. . .
/∗ Although we ’ re busy , i t i sn ’ t n ice to monopolize the CPU by

tak ing advantage o f be ing a ke rne l thread ∗/
i f ( current−>need resched )
{

/∗ i f we y i e l d the CPU, we must make sure we ’ l l be re−schedu l ed
l a t e r on .

∗/
ICPT LOG(LOG MED, LOG AREA PORTALS,

”Kernel thread %s − r e s chedu l i ng .\n” ,
current−>comm) ;

s e t c u r r e n t s t a t e (TASK RUNNING) ;

schedu le ( ) ;
}

#endif
/∗ Memory ba r r i e r to see the co r r e c t f l a g va lue ∗/
mb( ) ;
. . .

}

The callback function recv_short_msg() is a called by Portals, after
the driver calls lib_parse(). The argument rlen specifies the length of
the incoming message. mlen is the length of the memory descriptor and
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indicates how many bytes the driver should write into the buffer pointed by
data.

int recv short msg ( na l cb t ∗ nal ,
void ∗ pr ivate ,
void ∗ data ,
s i z e t mlen ,
s i z e t r l en ,
l i b msg t ∗ cook i e )

{
int r e t v a l = 0 ;
i n a l s h o r t msg p r i v a t e t ∗ pr iv =

&(( i n a l p r i v a t e t ∗) p r i va t e)−>pr i va t e . short msg ;
icpt IUCA t IUCA = priv−>IUCA;

u8 ∗ msg buf fe r = priv−>msg buf fe r ;
pkthdr t ∗ hdr = ( pkthdr t ∗) msg buf fe r ;
/∗ Length o f data in the f i r s t packe t . ∗/
s i z e t data len = hdr−>l en − ( s izeof ( pkthdr t ) + s izeof ( p t l hd r t ) ) ;

ICPT FCT ENTRY(LOG MED, ”” ) ;

/∗ Copy data from the f i r s t packe t . ∗/
i f ( memcpytouser ( priv−>task ,

data ,
msg buf fe r + s izeof ( pkthdr t ) + s izeof ( p t l hd r t ) ,
min (mlen , data len ) ) ! = 0 )

{
ICPT ERROR( ”Could not copy incoming message\n”

”to u s e r spac ep ro c e s s !\n” ) ;

i f ( ( r e t v a l =
rtsc t s send msgend(&txcb kthread , IUCA, hdr−>msgNum))

< 0)
{

i f ( r e t v a l != −ENOBUFS)
{

ICPT ERROR( ”Could not send message to peer .\n”
”( r t s c t s s e nd () returned %d ) . \ n” ,
r e t v a l ) ;
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l i b f i n a l i z e ( nal , pr ivate , cookie , r e t v a l ) ;

ICPT FCT RETURN( re tva l , LOG MED, ”” ) ;
}
else
{

/∗ I f t h e r e i s no space in the TX CB,
the message w i l l be sen t l a t e r . ∗/
. . .

}
}

}

ICPT LOG(LOG MED, LOG AREA PORTALS,
”Copied %u bytes to use r space .\n” ,
min (mlen , data len )
) ;

i f ( mlen <= data len )
{

/∗ Send MSGEND back . ∗/
ICPT LOG(LOG MED, LOG AREA PORTALS,

”Got l a s t message . . . sending MSGEND back .\n” ) ;

i f ( ( r e t v a l =
rtsc t s send msgend(&txcb kthread , IUCA, hdr−>msgNum))

< 0)
{

i f ( r e t v a l != −ENOBUFS)
{

ICPT ERROR( ”Could not send message to peer .\n”
”( r t s c t s s e nd () returned %d ) . \ n” ,
r e t v a l ) ;

l i b f i n a l i z e ( nal , pr ivate , cookie , r e t v a l ) ;

ICPT FCT RETURN( re tva l , LOG MED, ”” ) ;
}
else
{
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/∗ I f t h e r e i s no space in the TX CB,
the message w i l l be sen t l a t e r . ∗/
. . .

}
}
else
{

/∗ No er ro r s . ∗/
l i b f i n a l i z e ( nal , pr ivate , cookie , 0 ) ;

}
}
else
{

/∗ Send CTS back . ∗/
c t s s e n t t ∗ c t s s e n t ;

ICPT LOG(LOG MED, LOG AREA PORTALS,
”Sending CTS back . . . \ n” ) ;

i f ( ( c t s s e n t = ( c t s s e n t t ∗)
kmalloc ( s izeof ( c t s s e n t t ) , GFP KERNEL) )
== NULL)

{
ICPT ERROR( ”Could not a l l o c a t e memory\n”

” f o r CTS sent message r eque s t !\n” ) ;

l i b f i n a l i z e ( nal , pr ivate , cookie , −ENOMEM) ;

ICPT FCT RETURN(−ENOMEM, LOG LOW, ”” ) ;
}
. . .

/∗ Send packe t . ∗/
i f ( ( r e t v a l = r t s c t s s e n d c t s (&txcb kthread , c t s s e n t ) )

< 0)
{

i f ( r e t v a l != −ENOBUFS)
{

ICPT ERROR( ”Could not send message to peer .\n”
”( r t s c t s s e nd () returned %d ) . \ n” ,
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r e t v a l ) ;

l i b f i n a l i z e ( nal , pr ivate , cookie , r e t v a l ) ;

ICPT FCT RETURN( re tva l , LOG MED, ”” ) ;
}
else
{

/∗ I f t h e r e i s no space in the TX CB,
the message w i l l be sen t l a t e r . ∗/

}
}
else
{

. . .
}

}
ICPT FCT RETURN( re tva l , LOG MED, ”” ) ;

}

Altogether the Portals driver consists more than 5000 lines of code and
is almost twice as big as the original Intercept driver.
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Testing

6.1 First Development System

To compile and test the driver an environment for testing was set up. It
consists of two rack mounted nodes, each with the following configuration:

• Motherboard: Supermicro P4DPR, Intel E7500 chipset.

• Dual Xeon P4 2.2 Ghz CPUs with hyperthreading enabled.

• 512 MB DDR-266 Ram.

• One Intercept NIC, in PCI-X 66 Mhz mode.

• Redhat 8.0, Redhat Kernel 2.4.18-14 with SMP enabled, gcc 3.2.

6.1.1 Loopback tests

The characteristic that was tested first is the bandwith. The program
VDMATransfer of Martin Maletinsky (SCS) was run with an unmodified
version of the Intercept driver. The transfer of a message of 100 MB size,
revealed a bandwith of 47.2 MB/s. A similar program under Portals reached
49.6 MB/s. This showed that the Portals implementation doesn’t have to
be slower, even if there’s a Portals driver between the Intercept driver and
the application.

6.1.2 Ping-pong tests

The ping-pong test consists of two programs: a client program that sends a
message to the server program and measures the time and a server program

57
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Figure 6.1: 1th development system at the Scalable Systems Lab, UNM.

Figure 6.2: Running NICs in the development system.
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Figure 6.3: Development System network topology.

that returns the message. 30 ping message were send back and forth in one
test. The following 5 series show that the average latency is ≈ 45µs.

min [µs] max [µs] average [µs]
40 91 48
39 93 45
33 102 40
40 101 48
31 107 42

An interesting approach is to poll the nic instead of using interrupts. At
first sight this might be a waste to spend a whole CPU with polling a device.
However latest CPUs like the Intel Pentium 4 offer two instruction paths in-
stead of only one. From outside it looks like two independent CPUs but from
inside they share the same datapath. This feature called “hyperthreading”
may increase the throughput of a single CPU significantly when two pro-
cesses run that don’t occupy the same ressources on the CPU. For instance
a program that renders an image and one that compiles source code might
run in parallel. Therefore it doesn’t make sense to run one computational
process twice, because the two processes would compete for the calculation
units on the CPU. But it makes sense to use one of the “virtual” CPUs for
computation and one for communication exculsively.

The next five series show that polling reduces significantly the latency
to ≈ 30µs.:
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min [µs] max [µs] average [µs]
23 145 32
22 90 30
23 87 29
22 91 27
23 91 27

Finally a message of 100 MB size was transferred from one node to
another to measure the bandwith. It’s ≈ 56.8 MB/s with VDMA transfers.
If the message is not perfectly aligned then the bandwith drops to 52.4 MB/s.
If the driver is force to transfer everything over the CB protocol then the
bandwith is even lower: 47.8 MB/s.

The motherboards refused constantly to operate faster than 66 Mhz.
The fact that even the testprogram VDMATransfer for the unmodified driver
from SCS was slow reached the conclusion the there must be a hardware
problem and that the Portals part is not the bottleneck.

These numbers are so ricidulous that I asked the people from SCS to run
VDMATransfer on their systems. They got 357 MB/s over PCI-X 133 MHz
on their Supermicro P4DL6 boards (textbf(ServerWorks GC-LE chipset).

Neither a BIOS upgrade nor a completely disabled logging of the driver
nor a firmware upgrade of the NICs cured them.

6.2 Second Development System

Since the first system didn’t produce the expected results, I looked for an-
other system. The problem was to find another PCI-X system to reach the
maximum performance. I eventually could organize two Itanium machines
(HP rx2600) that were configured as follows:

• HP zx-1 chipset

• Dual Itanium-2 900 Mhz, 1.5 MB L3 cache.

• 8 GB Ram

• One Intercept NIC, in 133 Mhz mode, plugged in the slow 0.5 GB/s
slot because it did not fit in the fast 1 GB/s slot.

• Redhat Advanced Server 2.1, Redhat Kernel 2.4.18-e.12 with orig-
inal configuration from SCS, gcc 2.96

The bandwith results with the original SCS drivers so far are:
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Figure 6.4: 2nd development system at the Scalable Systems Lab, UNM.

Figure 6.5: Running NICs in the development system.
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210 MB/s in loopback mode, with regardless of what planes are activated.

240 MB/s two NICs and only one plane.

400 MB/s two nics with two or more planes.

6.3 MPI

The final goal of the project was to run some MPI programs over Portals.
Further research discovered that there’s no MPI library for Sourceforge Por-
tals 3.2. The only MPI library available is for Cplant Portals 3.0. Since
a compilation of the MPI library under the new Portals was not possible,
migrating the driver to Cplant Portals was considered. Examination of the
Portals 3.0 code revealed that major changes in the driver itself would have
been needed to get it run under the older version. In the end it was just a
matter of time, if this seamed feasible or not. Because a port of the MPI
library to the newer Portals version is under way, that part of the project
was dropped.
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Conclusion

7.1 Results

The presented driver shows one possibility among several how a Portals
driver may look like. A comparison between a program that accesses the
NIC on a very low level (VDMATransfer) and a Portals application pointed
out that the additional overhead imposed by Portals is neglectable.

7.2 Prospects

The most important drawback of the current implementation is that only
one userspace process is currently supported. If, at a later date, the NIC
will be redesigned then it is very likely that FPGAs with integrated CPU
cored will be used. This will open the field for a bunch of new possibilities
for a future implementation.

7.3 Portals Feedback

Portals offers a very coarse-grained interface to its drivers. If the NIC has
its own CPU that does the main part of the work, then that is sufficient
enough. However in recent and future NICs that CPU becomes the bottle-
neck (according to the SCS guys) because it only can process the traffic in a
serial manner. FPGA based NICs like Intercept have the ability to process
packets in parallel because the number of available state machines is limited
only by the number of offered flip-flops of the FPGA.

Especially the Intercept NIC supports broadcast packets and one-sided
/ two-sided communication in hardware. The current Portals interface does
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not support those sophisticated methods, everything is pushed up to the
Portals library level or even to the MPI library level. A fine-grained interface
might allow the driver to forward those methods to the hardware. If the
driver does not offer its own methods then Portals could “fall back” and
emulate those function calls via the more simplified ones supported by the
hardware (e.g. there is only a send functino in the NAL, no distinction is
made between a get and a put). Portals uses its own protocol on top of the
driver. Depending on the driver’s implementation some packet types (e.g.
acknowledge packets) might be sent twice, once by the driver and once by
Portals. An interface that offers the possibility to attach Portals messages
to the lower level ones that are caused by the same event might reduce the
amount of sent packets.

One might compare this architecture to driver models for graphic cards
(like OpenGL, DirectX and so on).

7.4 Commentary

It’s always difficult to read other people’s code . . . especially if the code
is 15000 lines long as the VDMA handler is! Nevertheless it’s been an
challenging and very interesting work. Very frustrating were my experiences
with software and hardware that didn’t meet the actual specifications. For
example I wasted one week trying to get Portals run and my machines simply
kept crashing all the time. I eventually figured out that Portals is SMP safe
but the rtscts driver I used wasn’t and therefore continously crashed on my
SMP machines. A had a similar experience with the Intercept network card:
My first test programs that used VDMA got stock and nothing ever happend.
I even sent my code back to the SCS team and they couldn’t tell me why it
crashed. I was finally told that it’d be better to align every buffer to 4096
bytes. I did so and magic happend! Well I figured out that my firmware
was too old and that the new update I got met the specifications . . . At the
very ending of my driver writing when I started to test my implementation
I couldn’t get the expected bandwith figures because of some unexplainable
hardware incompatibilities. I sent my programs back to SCS and it run five
times faster on their motherboards . . .

7.5 Thank You!

At this place I would like to thank the following people. Without them this
project would never have been realized:
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• Prof. Barney Maccabe for hiring another useless Swiss guy ;-) and his
support.

• Prof. Tony Gunzinger and Adrian Riedo who maked my exchange
possible.

• Ben Andrews for proofreading my report and being a good friend.
The other guys from the “Obscure Acronym Lab” (OAL) for the moral
support. Special thanks to Darko Stefanovic to lend me two Itanium
machines.

• Wenbin Zhu for all the help with Portals.

• Josh Karlin, Edgar Leon and Carl Sylvia for helping me out with
answering questions and help for organizing and installing equipment.

• Kevin Pedretti of Sanida National Laboratories for the jump start with
Portals and for answering my never ending questions.

• Rolf Riesen of Sanida National Laboratories for helping me finding a
protocol for me driver.

• Martin Maletinsky, Martin Uehli and Vincenzo di Pompeo of Super-
computing Systems Zürich
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Source Code

This section contains test programs to examine the Portals driver. Ev-
ery program run successfully with the written implementation both using
VDMA transfer and CB transfers.

A.1 Ping-pong

Listing A.1: ping-pong.h

//#de f i n e DEBUG

#define HW BUF LEN (LOOPS∗1024)
#define HW SRVR PID (5)
#define HW SRVR NID (0)
#define SRV PORTAL (2)
#define CLI PORTAL (4)

#define MAX MES 10
#define MAX MDS 10
#define MAX EQS 10
#define MAX ACI 0
#define MAX PTI 10

#define LOOPS 30

#ifde f NAL INTERCEPT
#define NAL INTERFACE PTL IFACE INAL
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#endif

#i f d e f NAL MYRINET
#define NAL INTERFACE PTL IFACE MYR
#endif

#i fde f DEBUG
#define PDEBUG( fmt , args . . . ) p r i n t f ( fmt , ##args )
#else
#define PDEBUG( fmt , args . . . )
#endif

Listing A.2: ping-pong cli.c
/∗ ping−pong ∗/

#include < s t d i o . h>
#include < s t d l i b . h>
#include < s t r i n g . h>
#include <uni s td . h>
#include < l im i t s . h>
#include < sys / time . h>
#include < po r t a l s /p30 . h>
#include ”ping−pong . h”

#define min(a , b ) ( ( ( a)<(b ) ) ? ( a ) : ( b ) )
#define max(a , b ) ( ( ( a)>(b ) ) ? ( a ) : ( b ) )

char ∗
e v en t t o s t r ( int event )
{

i f ( event == PTL EVENT GET START) return ”PTL EVENT GET START” ;
i f ( event == PTL EVENT GET END) return ”PTL EVENT GET END” ;
i f ( event == PTL EVENT GET FAIL) return ”PTL EVENT GET FAIL” ;

i f ( event == PTL EVENT PUT START) return ”PTL EVENT PUT START” ;
i f ( event == PTL EVENT PUT END) return ”PTL EVENT PUT END” ;
i f ( event == PTL EVENT PUT FAIL) return ”PTL EVENT PUT FAIL” ;

i f ( event == PTL EVENT REPLY START) return ”PTL EVENT REPLY START” ;
i f ( event == PTL EVENT REPLY END) return ”PTL EVENT REPLY END” ;
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i f ( event == PTL EVENT REPLY FAIL) return ”PTL EVENT REPLY FAIL” ;

i f ( event == PTL EVENT ACK) return ”PTL EVENT ACK” ;

i f ( event == PTL EVENT SEND START) return ”PTL EVENT SEND START” ;
i f ( event == PTL EVENT SEND END) return ”PTL EVENT SEND END” ;
i f ( event == PTL EVENT SEND FAIL) return ”PTL EVENT SEND FAIL” ;

i f ( event == PTL EVENT UNLINK) return ”PTL EVENT UNLINK” ;

return NULL;
}

int main ( int argc , char ∗∗ argv )
{

int rc ;
int i ;
p t l n i l i m i t s t des i r ed , a c tua l ;
char inbuf [HW BUF LEN] ;
char outbuf [HW BUF LEN] ;
p t l h and l e n i t n i ;
p t l hand le me t me ;
pt l md t md incoming , md outgoing ;
pt l handle md t md, md2 ;
p t l h and l e e q t eq ;
p t l e v e n t t ev ;
p t l p r o c e s s i d t i d l o c a l , id remote ;
struct t imeva l tv1 , tv2 , tv3 , tv4 ;
unsigned long long delay , s ta r t , stop ;
unsigned long long dmin , dmax , sum ;
const int num eq s lots = 10 ;

/∗ P t l I n i t ( ) must be c a l l e d f i r s t t h ing ∗/
rc = P t l I n i t (NULL) ;
i f ( rc ) {

p r i n t f ( ”P t l I n i t () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}

de s i r ed . max match entr ies = MAX MES;
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de s i r ed . max mem descriptors = MAX MDS;
de s i r ed . max event queues = MAX EQS;
de s i r ed . max atable index = MAX ACI;
d e s i r ed . max ptable index = MAX PTI;

/∗ i n i t i a l i z e the i n t e r c e p t p o r t a l s i n t e r f a c e ∗/
rc = Pt lNI In i t (NAL INTERFACE, PTL PID ANY, & des i r ed , & actua l , & ni ) ;
i f ( rc ) {

p r i n t f ( ”Pt lNI In i t () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}

p r i n t f ( ”p i n g c l i e n t s t a r t ed . . . \ n” ) ;

s t r cpy ( outbuf , ”h e l l o from ping−ping c l i e n t . ” ) ;

i d l o c a l . nid = PTL NID ANY;
i d l o c a l . pid = PTL PID ANY;

i f ( ( rc = PtlMEAttach ( ni , CLI PORTAL, i d l o c a l , 0 , ˜ 0 , PTL RETAIN,
PTL INS AFTER, &me) ) ) {

p r i n t f ( ”PtlMEAttach f a i l e d with %d\n” , rc ) ;
abort ( ) ;

}

/∗ c r ea t e an event queue ∗/
i f ( ( rc = PtlEQAlloc ( ni , num eq slots , NULL, & eq ) ) ) {

p r i n t f ( ”PtlEQAlloc f a i l e d with %d\n” , rc ) ;
abort ( ) ;

}

/∗
∗ F i l l in the MD and a t t ach i t
∗/

md incoming . s t a r t = inbuf ;
md incoming . l ength = s izeof ( inbuf ) ;
md incoming . th r e sho ld = PTL MD THRESH INF;
// md incoming . max o f f s e t = IOSIZE ;
md incoming . opt ions = PTL MD OP PUT;
md incoming . u s e r p t r = NULL;
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md incoming . eventq = eq ;
memset ( inbuf , 0 , s izeof ( inbuf ) ) ;
i f ( ( rc = PtlMDAttach ( me , md incoming , PTL RETAIN, PTL RETAIN, &md ) ) ) {

p r i n t f ( ”PtlMDAttach f a i l e d with %d\n” , rc ) ;
abort ( ) ;

}

/∗ Setup the outgo ing b u f f e r ∗/

md outgoing . s t a r t = outbuf ;
md outgoing . l ength = s t r l e n ( outbuf ) + 1 ;
md outgoing . th r e sho ld = PTL MD THRESH INF;
// md outgoing . max o f f s e t = args−>s i z e +128;
md outgoing . opt ions = PTL MD OP PUT;
md outgoing . u s e r p t r = NULL;
md outgoing . eventq = eq ;
/∗ md outgoing . eventq . hand l e i d x = −1; ∗/

i f ( ( rc = PtlMDBind( ni , md outgoing , &md2 ) ) ) {
p r i n t f ( ”PtlMDBind f a i l e d with %d\n” , rc ) ;
abort ( ) ;

}

id remote . nid = HW SRVR NID;
id remote . pid = HW SRVR PID;

dmin = LONG LONG MAX ;
dmax = 0 ;
sum = 0;

s l e e p ( 1 ) ;

p r i n t f ( ”Sending %d ping ( s ) to NID %Lu\n” , LOOPS,
(unsigned long long ) id remote . nid ) ;

gett imeofday(&tv1 , NULL) ;
i f ( ( rc = PtlPut ( md2 , PTL NOACK REQ, id remote , SRV PORTAL,

0 , 0 , 0 , 0 ) ) )
{

p r i n t f ( ”PtlPut f a i l e d with %d\n” , rc ) ;
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abort ( ) ;
}

while ( 1 )
{

i f ( PtlEQWait ( eq , & ev ) != PTL OK )
{

f p r i n t f ( s tde r r , ”PtlEQWait () f a i l e d \n” ) ;
e x i t ( 1 ) ;

}

PDEBUG( ”got event : %s \n” , e v en t t o s t r ( ev . type ) ) ;

switch ( ev . type )
{
case PTL EVENT SEND END:

gett imeofday(&tv2 , NULL) ;

s t a r t = tv1 . t v s e c ∗1000000 + tv1 . tv usec ;
stop = tv2 . t v s e c ∗1000000 + tv2 . tv usec ;

de lay = stop − s t a r t ;
sum += delay ;
dmin = min (dmin , de lay ) ;
dmax = max(dmax , de lay ) ;

PDEBUG( ”Sent %Lu bytes in %Lu us ( round t r i p de lay ) . \ n” ,
md outgoing . length , de lay ) ;

PDEBUG( ”Latency %Lu us .\n” , de lay /2 ) ;

u s l e ep (1000000/5) ;

i f ( ++ i >= LOOPS )
{

p r i n t f ( ”Summary :\n” ) ;
p r i n t f ( ”Minumum latency : %Lu\n” , dmin ) ;
p r i n t f ( ”Maximum la tency : %Lu\n” , dmax ) ;
p r i n t f ( ”Average: %Lu (%u t r i e s )\n” , sum / LOOPS, LOOPS) ;

PtlMDUnlink ( md ) ;
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PtlMDUnlink ( md2 ) ;

PtlMEUnlink ( me ) ;

/∗ g r a c e f u l c leanup ∗/

PtlEQFree ( eq ) ;

Pt lNIFin i ( n i ) ;
P t lF in i ( ) ;

return 0 ;
}
/∗ send the md to the h e l l o world s e r v e r ∗/
gett imeofday(&tv1 , NULL) ;
i f ( ( rc = PtlPut ( md2 , PTL NOACK REQ, id remote , SRV PORTAL,

0 , 0 , 0 , 0 ) ) )
{

p r i n t f ( ”PtlPut f a i l e d with %d\n” , rc ) ;
abort ( ) ;

}
break ;

default :
break ;

}
}

}

Listing A.3: ping-pong srvr.h
/∗ h e l l o world s e r v e r ∗/

#include < s t d i o . h>
#include < s t d l i b . h>
#include < s t r i n g . h>
#include < s i g n a l . h>
#include < po r t a l s /p30 . h>
#include ”ping−pong . h”

// t yp ed e f vo id (∗ s i g hand l e r ) ( i n t ) s t e h t schon in <asm/ s i g n a l . h>
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s i g h a nd l e r t o ld ;
p t l h and l e n i t n i h ;

void catchabort ( int nr )
{

p r i n t f ( ”abort .\n” ) ;

/∗ g r a c e f u l c leanup ∗/
PtlNIFin i ( n i h ) ;
P t lF in i ( ) ;

e x i t ( 0 ) ;
}

void ca t ch igno re ( int nr )
{

p r i n t f ( ”caught s i g n a l no: %d\n” , nr ) ;
s i g n a l ( nr , ca t ch i gno re ) ;

}

char ∗
e v en t t o s t r ( int event )
{

i f ( event == PTL EVENT GET START) return ”PTL EVENT GET START” ;
i f ( event == PTL EVENT GET END) return ”PTL EVENT GET END” ;
i f ( event == PTL EVENT GET FAIL) return ”PTL EVENT GET FAIL” ;

i f ( event == PTL EVENT PUT START) return ”PTL EVENT PUT START” ;
i f ( event == PTL EVENT PUT END) return ”PTL EVENT PUT END” ;
i f ( event == PTL EVENT PUT FAIL) return ”PTL EVENT PUT FAIL” ;

i f ( event == PTL EVENT REPLY START) return ”PTL EVENT REPLY START” ;
i f ( event == PTL EVENT REPLY END) return ”PTL EVENT REPLY END” ;
i f ( event == PTL EVENT REPLY FAIL) return ”PTL EVENT REPLY FAIL” ;

i f ( event == PTL EVENT ACK) return ”PTL EVENT ACK” ;

i f ( event == PTL EVENT SEND START) return ”PTL EVENT SEND START” ;
i f ( event == PTL EVENT SEND END) return ”PTL EVENT SEND END” ;
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i f ( event == PTL EVENT SEND FAIL) return ”PTL EVENT SEND FAIL” ;

i f ( event == PTL EVENT UNLINK) return ”PTL EVENT UNLINK” ;

return NULL;
}

int
main ( int argc , char ∗∗ argv )
{

int rc ;
int i ;
p t l n i l i m i t s t des i r ed , a c tua l ;
char inbuf [HW BUF LEN] ;
char outbuf [HW BUF LEN] ;
p t l h and l e n i t n i ;
p t l hand le me t me ;
pt l md t md incoming , md outgoing ;
pt l handle md t md in handle , md out handle ;
p t l h and l e e q t eq ;
p t l e v e n t t ev ;
p t l p r o c e s s i d t i d l o c a l ;
const int num eq s lots = 10 ;

/∗ P t l I n i t ( ) must be c a l l e d f i r s t t h ing ∗/
rc = P t l I n i t (NULL) ;
i f ( rc ) {

p r i n t f ( ”P t l I n i t () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}

de s i r ed . max match entr ies = MAX MES;
de s i r ed . max mem descriptors = MAX MDS;

de s i r ed . max event queues = MAX EQS;
de s i r ed . max atable index = MAX ACI;
d e s i r ed . max ptable index = MAX PTI;

/∗ i n i t i a l i z e the i n t e r c e p t p o r t a l s i n t e r f a c e ∗/
rc = Pt lNI In i t (NAL INTERFACE, HW SRVR PID, & des i r ed , & actua l , & ni ) ;
i f ( rc ) {
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p r i n t f ( ”Pt lNI In i t () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}

p r i n t f ( ”p i ng s e r v e r s t a r t ed . . . \ n” ) ;

s t r cpy ( outbuf , ”h e l l o from ping−ping s e r v e r . ” ) ;

i d l o c a l . nid = PTL NID ANY;
i d l o c a l . pid = PTL PID ANY;

i f ( ( rc = PtlMEAttach ( ni , SRV PORTAL, i d l o c a l , 0 , ˜ 0 ,
PTL UNLINK, PTL INS AFTER, &me ) ) ) {

p r i n t f ( ”P t l I n i t () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}

/∗ c r ea t e an event queue ∗/
i f ( ( rc = PtlEQAlloc ( ni , num eq slots , NULL, & eq ) ) ) {

p r i n t f ( ”PtlEQAlloc f a i l e d with %d\n” , rc ) ;
abort ( ) ;

}

/∗ Setup the outgo ing b u f f e r ∗/
md outgoing . s t a r t = outbuf ;
md outgoing . l ength = s t r l e n ( outbuf ) + 1 ;
md outgoing . th r e sho ld = PTL MD THRESH INF;
// server−>md outgoing . max o f f s e t= TXIOSIZE ;
md outgoing . opt ions = PTL MD OP PUT;
md outgoing . u s e r p t r = NULL;

/∗ md outgoing . eventq . hand l e i d x = −1; ∗/
md outgoing . eventq = eq ;
i f ( ( rc = PtlMDBind( ni , md outgoing ,

&md out handle ) ) ) {
p r i n t f ( ”PtlMDBind() f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}

/∗
∗ F i l l in the MD and a t t ach i t
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∗/
md incoming . s t a r t = inbuf ;
md incoming . l ength = s izeof ( inbuf ) ;
md incoming . th r e sho ld = PTL MD THRESH INF;
// server−>md incoming . max o f f s e t = (RXIOSIZE ) ;
md incoming . opt ions = PTL MD OP PUT;
md incoming . u s e r p t r = NULL;
md incoming . eventq = eq ;

i f ( ( rc = PtlMDAttach (me , md incoming ,
PTL UNLINK, PTL UNLINK, & md in handle ) ) ) {

p r i n t f ( ”PtlMDAttach f a i l e d with %d\n” , rc ) ;
abort ( ) ;

}

i = 0 ;

while ( 1 )
{

i f ( PtlEQWait ( eq , & ev ) != PTL OK )
{

f p r i n t f ( s tde r r , ”PtlEQWait () f a i l e d \n” ) ;
e x i t ( 1 ) ;

}

PDEBUG( ”got event : %s \n” , e v en t t o s t r ( ev . type ) ) ;

i f ( ev . type == PTL EVENT PUT END)
{

PDEBUG( ”got a message ! ! ! \ n” ) ;

PDEBUG( ”r e c e i v ed message from node %d\n”
”reque s t l ength : %lu , manipulated l ength : % lu \n”
”message : %s \n” ,
( int ) ev . i n i t i a t o r . nid ,
(unsigned long ) ev . r l ength ,
(unsigned long ) ev . mlength ,
inbuf ) ;
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i f ( ++ i >= LOOPS)
{

PtlMDUnlink ( md in handle ) ;
PtlMDUnlink ( md out handle ) ;

PtlMEUnlink ( me ) ;

/∗ g r a c e f u l c leanup ∗/

PtlEQFree ( eq ) ;

Pt lNIFin i ( n i ) ;
P t lF in i ( ) ;

return 0 ;
}

i f ( ( rc = PtlPut ( md out handle , PTL NOACK REQ,
ev . i n i t i a t o r , CLI PORTAL, 0 , 0 , 0 , 0 ) ) ) {

p r i n t f ( ”PtlPut f a i l e d with %d\n” , rc ) ;
abort ( ) ;

}
}

}
}

A.2 Bandwith

Listing A.4: bandwith.h

//#de f i n e DEBUG

#define BUFFER ALIGNEMENT 4096 //32

#define BUFFER SIZE (100∗1024∗1024UL)

#define HW SRVR PID (5)
#define HW SRVR RCV PTL ( 5 )

#define MAX MES 10
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#define MAX MDS 10
#de f i n e MAX EQS 10
#define MAX ACI 0
#define MAX PTI 10

#define min(a , b ) ( ( ( a)<(b ) ) ? ( a ) : ( b ) )
#define max(a , b ) ( ( ( a)>(b ) ) ? ( a ) : ( b ) )

#ifde f NAL INTERCEPT
#define NAL INTERFACE PTL IFACE INAL
#endif

#i fde f NAL MYRINET
#define NAL INTERFACE PTL IFACE MYR
#endif

#i fde f DEBUG
#define PDEBUG( fmt , args . . . ) p r i n t f ( fmt , ##args )
#else
#define PDEBUG( fmt , args . . . )
#endif

Listing A.5: bandwith cli.c
/∗ s imple bandwith measurement t o o l
∗/

#include < s t d i o . h>
#include < s t d l i b . h>
#include < s t r i n g . h>
#include <getopt . h>
#include < sys / time . h>
#include <uni s td . h>
#include < po r t a l s /p30 . h>
#include ”bandwith . h”

unsigned char buf [BUFFER SIZE ] a t t r i b u t e ( ( a l i gned (BUFFER ALIGNEMENT) ) ) ;

char ∗
e v en t t o s t r ( int event )
{
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i f ( event == PTL EVENT GET START) return ”PTL EVENT GET START” ;
i f ( event == PTL EVENT GET END) return ”PTL EVENT GET END” ;
i f ( event == PTL EVENT GET FAIL) return ”PTL EVENT GET FAIL” ;

i f ( event == PTL EVENT PUT START) return ”PTL EVENT PUT START” ;
i f ( event == PTL EVENT PUT END) return ”PTL EVENT PUT END” ;
i f ( event == PTL EVENT PUT FAIL) return ”PTL EVENT PUT FAIL” ;

i f ( event == PTL EVENT REPLY START) return ”PTL EVENT REPLY START” ;
i f ( event == PTL EVENT REPLY END) return ”PTL EVENT REPLY END” ;
i f ( event == PTL EVENT REPLY FAIL) return ”PTL EVENT REPLY FAIL” ;

i f ( event == PTL EVENT ACK) return ”PTL EVENT ACK” ;

i f ( event == PTL EVENT SEND START) return ”PTL EVENT SEND START” ;
i f ( event == PTL EVENT SEND END) return ”PTL EVENT SEND END” ;
i f ( event == PTL EVENT SEND FAIL) return ”PTL EVENT SEND FAIL” ;

i f ( event == PTL EVENT UNLINK) return ”PTL EVENT UNLINK” ;

return NULL;
}

const char ∗ get argument ( const char ∗∗ argv ,
const char ∗ keystr ,
const char ∗ d e f l t )

{
int i ;
for ( i =1; argv [ i ] ; i++)

i f ( s t r s t r ( argv [ i ] , k ey s t r ) )
return argv [ i +1] ;

return d e f l t ;
}

int
main ( int argc , const char ∗∗ argv )
{

int rc ;

int num eq s lots = 10 ;
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p t l p r o c e s s i d t snd ta rge t ;
p t l ma t ch b i t s t snd match bits = 0;
pt l md t snd md ;
p t l e v e n t t event ;

p t l h and l e n i t n i h ;
p t l h and l e e q t eq h ;
pt l handle md t md h ;

p t l n i l i m i t s t des i r ed , a c tua l ;
struct t imeva l tv s ta r t , tvstop ;

/∗ Of f s e t in send bu f f e r , to in t roduce una l i gned t r a n s f e r s . ∗/
const unsigned long mis sa l i gn = a to l ( get argument ( argv , ”−m” , ”0 ” ) ) ;

/∗ Length o f the whole message ( j u s t f o r l im i t a t i on , i n c l u d e s the
f i l ename s t r i n g ) ∗/

const unsigned long l ength = a to l ( get argument ( argv , ”− l ” , ”0 ” ) ) ;

unsigned long msglen ;
unsigned char ∗ mis sa l i gnedbu f ;

double b , ddelay , dmsglen , dstar t , dstop ;

mi s sa l i gnedbu f = buf + mi s s a l i gn ;
msglen = ( length != 0 ) ? min(1024∗1024∗ l ength , s izeof ( buf ) − mis sa l i gn )

: ( s izeof ( buf ) − mis sa l i gn ) ;

p r i n t f ( ”Bu f f e raddre s s : %p\n”
”Buf f e raddre s s + missa l ignement : %p\n”
”Messagelength : % lu \n” ,
buf ,
mis sa l ignedbuf ,
msglen ) ;

/∗ P t l I n i t ( ) must be c a l l e d f i r s t t h ing ∗/
rc = P t l I n i t (NULL) ;
i f ( rc ) {

p r i n t f ( ”P t l I n i t () f a i l e d . rc = %d\n” , rc ) ;
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abort ( ) ;
}

de s i r ed . max match entr ies = MAX MES;
de s i r ed . max mem descriptors = MAX MDS;
de s i r ed . max event queues = MAX EQS;
de s i r ed . max atable index = MAX ACI;
d e s i r ed . max ptable index = MAX PTI;

/∗ i n i t i a l i z e the myrinet p o r t a l s i n t e r f a c e ∗/
rc = Pt lNI In i t (NAL INTERFACE, PTL PID ANY, & des i r ed , & actua l , & ni h ) ;
i f ( rc ) {

p r i n t f ( ”Pt lNI In i t () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}

/∗ c r ea t e an event queue ∗/
rc = PtlEQAlloc ( ni h , num eq slots , NULL, & eq h ) ;
i f ( rc ) {

p r i n t f ( ”PtlEQAlloc () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}

/∗ se tup a md ∗/
snd md . s t a r t = mis sa l i gnedbu f ;
snd md . l ength = msglen ;
snd md . th r e sho ld = 1;
// snd md . max o f f s e t = ?;
snd md . opt ions = 0;
snd md . eventq = eq h ;

/∗ bind the md ∗/
snd ta rge t . nid = 0 ;
snd ta rge t . pid = HW SRVR PID;

p r i n t f ( ”sending to nid=%d , pid=%d\n” ,
( int ) snd ta rge t . nid , ( int ) snd ta rge t . pid ) ;

rc = PtlMDBind( ni h , snd md , &md h ) ;
i f ( rc ) {
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p r i n t f ( ”PtlMDBind() f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}

s l e e p ( 1 ) ;

/∗ send the md to the h e l l o world s e r v e r ∗/
gett imeofday(&tvs ta r t , NULL) ;
rc = PtlPut (md h , PTL NOACK REQ, snd target , HW SRVR RCV PTL,

0 , snd match bits , 0 , 0 ) ;
i f ( rc ) {

p r i n t f ( ”PtlPut () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}
/∗ ge t t imeo fday (&tvs top , NULL) ; ∗/

while ( 1 ) {
i f ( PtlEQWait ( eq h , & event ) != PTL OK ) {

f p r i n t f ( s tde r r , ”PtlEQGet () f a i l e d \n” ) ;
e x i t ( 1 ) ;

}
PDEBUG( ”got event : %s \n” , e v en t t o s t r ( event . type ) ) ;
switch ( event . type )
{
case PTL EVENT SEND START:

/∗ ge t t imeo fday (& t v s t a r t , NULL) ; ∗/
break ;

case PTL EVENT SEND END:
gett imeofday(&tvstop , NULL) ;
break ;

default :
break ;

}
i f ( event . type == PTL EVENT UNLINK) break ;

}

PtlMDUnlink ( md h ) ;
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PtlEQFree ( eq h ) ;

/∗ g r a c e f u l c leanup ∗/
PtlNIFin i ( n i h ) ;
P t lF in i ( ) ;

d s t a r t = (double ) t v s t a r t . t v s e c ∗ 1000 . 0 + ( double ) t v s t a r t . tv usec / 1 0 0 0 . 0 ;
dstop = (double ) tvstop . t v s e c ∗ 1000 . 0 + ( double ) tvstop . tv usec / 1 0 0 0 . 0 ;

ddelay = dstop − ds t a r t ;

p r i n t f ( ”Sent %lu bytes in %f ms .\n” , msglen , ddelay ) ;

dmsglen = msglen /1024/1024;
b = dmsglen/ddelay ∗1000 ;

p r i n t f ( ”Bandwith: % f MB/ s \n” , b ) ;

return 0 ;
}

Listing A.6: bandwith srvr.h
/∗ f i l e t r a n s s e r v e r ∗/

#include < s t d i o . h>
#include < s t d l i b . h>
#include < s t r i n g . h>
#include < s i g n a l . h>
#include <getopt . h>
#include < po r t a l s /p30 . h>
#include ”bandwith . h”

// t yp ede f vo id (∗ s i g hand l e r ) ( i n t ) s t e h t schon in <asm/ s i g n a l . h>

s i g h a nd l e r t o ld ;
p t l h and l e n i t n i h ;

unsigned char buf [BUFFER SIZE ] a t t r i b u t e ( ( a l i gned (BUFFER ALIGNEMENT) ) ) ;

char ∗
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e v en t t o s t r ( int event )
{

i f ( event == PTL EVENT GET START) return ”PTL EVENT GET START” ;
i f ( event == PTL EVENT GET END) return ”PTL EVENT GET END” ;
i f ( event == PTL EVENT GET FAIL) return ”PTL EVENT GET FAIL” ;

i f ( event == PTL EVENT PUT START) return ”PTL EVENT PUT START” ;
i f ( event == PTL EVENT PUT END) return ”PTL EVENT PUT END” ;
i f ( event == PTL EVENT PUT FAIL) return ”PTL EVENT PUT FAIL” ;

i f ( event == PTL EVENT REPLY START) return ”PTL EVENT REPLY START” ;
i f ( event == PTL EVENT REPLY END) return ”PTL EVENT REPLY END” ;
i f ( event == PTL EVENT REPLY FAIL) return ”PTL EVENT REPLY FAIL” ;

i f ( event == PTL EVENT ACK) return ”PTL EVENT ACK” ;

i f ( event == PTL EVENT SEND START) return ”PTL EVENT SEND START” ;
i f ( event == PTL EVENT SEND END) return ”PTL EVENT SEND END” ;
i f ( event == PTL EVENT SEND FAIL) return ”PTL EVENT SEND FAIL” ;

i f ( event == PTL EVENT UNLINK) return ”PTL EVENT UNLINK” ;

return NULL;
}

void catchabort ( int nr )
{

p r i n t f ( ”abort .\n” ) ;

/∗ g r a c e f u l c leanup ∗/
PtlNIFin i ( n i h ) ;
P t lF in i ( ) ;

e x i t ( 0 ) ;
}

void ca t ch igno re ( int nr )
{

p r i n t f ( ”caught s i g n a l no: %d\n” , nr ) ;
s i g n a l ( nr , ca t ch i gnore ) ;
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}

const char ∗ get argument ( const char ∗∗ argv ,
const char ∗ keystr ,
const char ∗ d e f l t )

{
int i ;
for ( i =1; argv [ i ] ; i++)

i f ( s t r s t r ( argv [ i ] , k ey s t r ) )
return argv [ i +1] ;

return d e f l t ;
}

int
main ( int argc , const char ∗∗ argv )
{

int rc ;

int num eq s lots = 10;
int r c v p t l i ndx = HW SRVR RCV PTL;
p t l ma t ch b i t s t rcv match b i t s = 0;
p t l ma t ch b i t s t r c v i g n o r e b i t s = 0xFFFFFFFFFFFFFFFF;
p t l p r o c e s s i d t rcv match id ;
pt l md t rcv md ;
p t l e v e n t t event , put end event ;

p t l h and l e e q t eq h ;
pt l hand le me t me h ;
pt l handle md t md h ;

p t l n i l i m i t s t actua l , d e s i r ed ;

int go t un l i nk event ;
int got put end event ;
int go t pu t s t a r t e v en t ;

const unsigned long mis sa l i gn = a to l ( get argument ( argv , ”−m” , ”0 ” ) ) ;

unsigned char ∗ mis sa l i gnedbu f ;
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mis sa l i gnedbu f = buf + mi s s a l i gn ;

/∗ P t l I n i t ( ) must be c a l l e d f i r s t t h ing ∗/
rc = P t l I n i t (NULL) ;
i f ( rc ) {

p r i n t f ( ”P t l I n i t () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}

de s i r ed . max match entr ies = MAX MES;
de s i r ed . max mem descriptors = MAX MDS;
de s i r ed . max event queues = MAX EQS;
de s i r ed . max atable index = MAX ACI;
d e s i r ed . max ptable index = MAX PTI;

/∗ i n i t i a l i z e the myrinet p o r t a l s i n t e r f a c e ∗/
rc = Pt lNI In i t (NAL INTERFACE, HW SRVR PID, & des i r ed , & actua l , & ni h ) ;
i f ( rc ) {

p r i n t f ( ”Pt lNI In i t () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}

/∗ c r ea t e an event queue ∗/
rc = PtlEQAlloc ( ni h , num eq slots , NULL, & eq h ) ;
i f ( rc ) {

p r i n t f ( ”PtlEQAlloc () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}

/∗ c r ea t e and a t t ach a match entry to a po r t a l ∗/
rcv match id . nid = PTL NID ANY;
rcv match id . pid = PTL PID ANY;

rc = PtlMEAttach ( ni h , r cv pt l i ndx , rcv match id ,
rcv match bits , r c v i g no r e b i t s ,
0 , PTL INS AFTER, &me h ) ;

i f ( rc ) {
p r i n t f ( ”PtlMEAttach () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}
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/∗ c r ea t e and a t t ach a md to the me ∗/
rcv md . s t a r t = mis sa l i gnedbu f ;
rcv md . l ength = s izeof ( buf ) − mis sa l i gn ;
rcv md . th r e sho ld = 1;
/∗ rcv md . max o f f s e t = HW BUF LEN; ∗/
rcv md . opt ions = PTL MD OP PUT | PTL MD TRUNCATE;
rcv md . eventq = eq h ;

p r i n t f ( ”buf : %p\n”
”buf + mi s s a l i gn : %p\n”
”bu f f e r l e n g th : % lu \n” ,
buf , mis sa l ignedbuf , ( unsigned long ) rcv md . l ength ) ;

rc = PtlMDAttach (me h , rcv md , PTL UNLINK, PTL UNLINK, &md h ) ;
i f ( rc ) {

p r i n t f ( ”PtlMDAttach () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}

/∗ i n s t a l l c t r l−c s i g n a l hand ler f o r proper shutdown ∗/
s i g n a l (SIGINT , catchabort ) ;

while ( 1 ) {
p r i n t f ( ”wa i t ing f o r a message . . . \ n” ) ;
go t un l i nk event = 0 ;
got put end event = 0 ;
g o t pu t s t a r t e v en t = 0 ;

while ( 1 ) {
i f ( PtlEQWait ( eq h , & event ) != PTL OK ) {

f p r i n t f ( s tde r r , ”PtlEQGet () f a i l e d \n” ) ;
e x i t ( 1 ) ;

}
f p r i n t f ( s tde r r , ”got event : %s \n” , e v en t t o s t r ( event . type ) ) ;
i f ( event . type == PTL EVENT PUT END) {

put end event = event ;
}
i f ( event . type == PTL EVENT UNLINK) break ;

}
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p r i n t f ( ”got a message ! ! ! \ n” ) ;

p r i n t f ( ” r e c e i v ed message from node %d\n”
”reque s t l ength : %lu , manipulated l ength : % lu \n” ,
( int ) put end event . i n i t i a t o r . nid ,
(unsigned long ) put end event . r l ength ,
(unsigned long ) put end event . mlength ) ;

/∗ r ea t t a ch the md to the me ∗/
rc = PtlMDAttach (me h , rcv md , PTL UNLINK, PTL UNLINK, &md h ) ;
i f ( rc ) {

p r i n t f ( ”PtlMDAttach () f a i l e d . rc = %d\n” , rc ) ;
abort ( ) ;

}
}

/∗ g r a c e f u l c leanup ∗/
PtlNIFin i ( n i h ) ;
P t lF in i ( ) ;

return 0 ;
}



Appendix B

Portals Installation

This section contains a quick guide how to install Portals. This is an extract
from an email correspondance with Kevin Pedretti.

1. Patch a kernel with the Luster 2.4.18 patch
2. Configure Portals:

./configure --with-linux=path_to_patched_kernel_src

3. Edit portals/api/api-init.c to turn off the default ex-
tremely verbose debugging. There should be a line like:
unsigned int portals_debug = ~0;
change this to:
unsigned int portals_debug = 0;

4. Do a make in portals/user/ptrxtx

5. Do a make in portals/user/hello_world

6. Edit the mac-map file in /user/etc. The README in the
same directory describes this file.

7. Startup Portals:
cd to portals/user/etc ./portals.eth start node_id eternet_device_name
e.g.,
./portals.eth start 0 eth0
This script should load the modules portals.o, p3mod.o,
rtscts.o, and kptrxtx into the kernel with no unresolved
symbols.

8. See if hello world works in portals/user/hello_world.
Start the hello_world_srvr on node 0. Then run hello_world_cli
in another window/on another node. The output of hello_world_srvr
should look something like...
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waiting for a message...
got a message!!!
received msg from node 0: this is a test of the emergency broadcasting
system

waiting for a message...
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